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Abstract—Diazotrophic rhizobacteria, trigger and enhance 

plant growth as well as yield through various mechanisms, 

so their use can reduce the application frequency of 

chemical fertilizers. Indole-3-acetic acid (IAA), a most 

common natural auxin influences several physiological 

processes of the plant’s health. The present study is aimed to 

optimize the conditions for IAA production, along with 

assay for plant growth promoting traits of Bacillus subtilis 

DR2 (KP455653), which is a diazotrophic Gram positive, 

rod bacterium, isolated from rhizosphere of road side weed, 

Eragrostis cynosuroides from Danapur, Patna, Bihar, India. 

The screening for IAA production was done in JNFbˉ broth 

with tryptophan (1 g.l
-1

) and without tryptophan at pH 5.8, 

30±2 °C temperature and 48 h incubation. 137.81 µg.ml
-1

 

and 100.26 µg.ml
-1

 IAA was produced in Trp
+
 and Trp

- 

media, respectively. Under various optimized conditions, 

maximum IAA was produced at 96 h incubation (137.81 

µg.ml
-1

), 35 °C temperature (141.92 µg.ml
-1

), pH 7 (158.79 

µg.ml
-1

), mannitol as carbon (160.85 µg.ml
-1

) and 

ammonium sulfate as nitrogen (162.93 µg.ml
-1

) sources with 

tryptophan at final concentration of 1.2 µg.ml
-1

 (168.09 

µg.ml
-1

), which enhanced the production by 1.2 fold. The 

findings suggest that B. subtilis DR2 is a potent organism to 

be used as biofertilizer.
 
 

 

Index Terms— DR2, IAA, PGP, rhizobacteria 

 

I. INTRODUCTION 

Rhizosphere, the narrow zone nearby the root system is 

much richer than the surrounding bulk soil, constituting a 

sink for carbon and other energy sources, supporting 

intense microbial growth and activity, due to presence of 

various organic compounds, released through exudation, 

secretion and deposition. The microbial community may 

be neutral, detrimental or beneficial for plant growth [1]. 

They promote plant growth directly or indirectly, along 

with enhancement of soil fertility by various growth 

promoting activities, so referred as plant growth 

promoting rhizobacteria, i.e., PGPR [2]. The PGPRs have 

emerged as the best alternative of hazardous chemical 

fertilizers for sustainable and eco-friendly agriculture, 
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because they are diazotrophs converting N2 into ammonia 

to be used by plants and also trigger plant growth via 

production of phytohormones, viz., IAA, gibberellic acid, 

cytokinins and ethylene. 80% of diazotrophic indole 

producing rhizobacteria promotes plant growth directly 

via phosphate solubilization, production of plant enzymes, 

HCN, antibiotics, siderophores for sequestering of iron 

and by lowering ethylene concentration via ACC 

deaminase activity [3]. IAA acts as an important signal 

molecule in the regulation of plant development by 

initiation, cell division and cell enlargement [4]. The 

amino acid L-tryptophan, serves as a physiological 

precursor for biosynthesis of auxins in microbes and 

plants [5], [6]. Bacteria synthesize auxins to perturb host 

physiological processes for their own benefit by altering 

the auxin pool, depending upon the amount of IAA 

produced. Therefore, it becomes necessary to identify and 

incorporate those efficient bacterial strains, which reside 

in the rhizosphere of plants, utilize the rich source of 

substrates, released from roots and are expected to 

produce auxins as secondary metabolites [7]. Several soil 

bacteria, particularly those belonging to the species of 

Bacillus and Pseudomonas have remarkable abilities to 

synthesize various beneficial substances, along with 

potent PGP activities. Amongst them, spore forming 

Bacilli are considered to be better, as they are more 

resistant to all the adverse situations, like temperature, 

chemicals, etc. [8]. The widespread occurrence of 

Eragrostis cynosuroides on the road side virgin land, 

prompted us to explore its rhizospheric population for (i) 

novel sources of indole producing diazotrophic bacteria 

(ii) assessment for PGP properties and assay and 

optimization of indole producing ability of Bacillus 
subtilis DR2 (KP455653) under different cultural 

conditions for agriculture and commercial purposes. 

II. MATERIALS AND METHODS 

A. Sample Collection and Isolation of Rhizospheric 

Diazotrophic Bacteria 

Soil sample was collected in sterile plastic bags from 

the rhizosphere of Eragrostis cynosuroides growing on 
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the road side (devoid of fertilizer) of Danapur, Patna, 

Bihar, India, (25º 34’ 56.2” N, 85º 2’ 37.06” E) and 

processed within three hours. In this study, all the 

experiments were performed in triplicates. To isolate 

nitrogen fixers, soil sample diluted up to 10-6 dilution and 

spread on to nitrogen free JNFbˉ solid agar medium [9] 

and incubated at 30±2 °C for 4-5 days. Bacterial colonies 

appearing on the plates were purified and sub cultured 

repeatedly. Their diazotrophy, under anaerobic condition 

was confirmed on the basis of pellicle formation by 

growing on nitrogen free JNFbˉ agar medium (0.15% 

agar), without shaking. Preservation was done at 4 °C in 

JNFbˉ medium. 

B. Assay for Plant Growth Promoting Traits 

All the isolates were screened for PGP traits in terms 

of i) nitrogen fixation [10] and ii) IAA production [11]. 

The selected isolate was examined for i) phosphate 

solubilization [12], ii) siderophore production [13], iii) 

HCN production [14], iv) ACC deaminase activity [15] 

and v) antifungal activity [16] on the species of 

Aspergillus and Fusarium. Quantification was done only 

for nitrogen fixation [17] and IAA production [11]. 

1) Nitrogen fixation: Screening and estimation 

Isolates were inoculated on nitrogen free malate media 

containing BTB (Bromo Thymol Blue) as an indicator 

[10] and incubated at 30±2 °C for 3-4 days. The blue 

color zone producers were marked as nitrogen fixers. 

Nitrogenase activity was estimated according to the 

method of [17] and acetylene reduction assay (ARA) as 

per the details of [18]. 

2) IAA: Production and estimation 

Indole test was performed by inoculating the isolates 

into tryptone (1%) broth for 48 h at 30±2 °C, followed by 

addition of kovac’s reagent (1ml). Appearance of cherry 

red color ring confirms IAA production. For 

quantification, culture was grown in JNFbˉ broth media 

with 1g.l-1 L- tryptophan (Trp+) and without tryptophan 

(Trp-), pH 5.8 and incubated at 30±2°C with shaking at 

80 rpm for 3-4 days. The culture was centrifuged at 3000 

rpm for 30 min. 1ml of supernatant was mixed with 2ml 

of Salkowaski reagent (1ml of 0.5M FeCl3 mixed in 50ml 

of 35% HClO4). The resulting mixture was left at room 

temperature for 25 min and the absorbance recorded at 

530 nm.  

C. Characterization: Phenotypic and Genotypic 

The identification was done on the basis of phenotypic 

genotypic characters [18]. 

D. Optimization of Cultural Conditions for IAA 

Effect of different incubation time (24, 48, 72, 96, 120 

and 144 h) was studied in JNFbˉ Trp+ (1g.l-1) broth 

medium at pH 5.8 and 30±2 °C. Thereafter, effect of 

various temperatures (25, 30, 35, 40, 45 and 50°C), pH (4, 

5, 6, 7, 8 and 9) were investigated followed by 

optimization of C-sources (5g.l-1 malic acid, glucose, 

sucrose, mannitol, fructose and lactose), N-sources (0.1% 

w/v urea, NaNO3, KNO3, NH4NO3, NH4Cl, (NH4)2SO4) 

and tryptophan concentrations (0.1, 0.2…....1.0, 1.2, 1.4 

and 1.6 g.l-1). Optimization was done with one variable at 

a time. 

E. Statistical Analysis 

The data obtained were statistically analyzed for social 

sciences (SPSS 16.0) software, and graphically 

represented as the mean ± standard deviation (n=3). 

III. RESULTS AND DISCUSSIONS 

B. Isolation and Characterization of Rhizospheric 

Diazotrophic Bacteria 

Seven isolates (DR1-DR7) appeared on solid JNFbˉ 

media, which upon repeated sub culturing retained their 

growth without losing diazotrophy. Growth of the isolates 

in nitrogen free-semi solid medium (0.15% agar) resulted 

in the formation of pellicles with significant differences 

in their location below the surface of media indicating 

their diazotrophic property under semi anaerobic 

environment [19]. 

C. Assay for Plant Growth Promoting Traits 

1) Nitrogen fixation: Screening and estimation 

All the isolates tested positive for nitrogen fixation. 

(Table I). The zone of coloration was (20mm) in DR2, 

which is maximum amongst the positive isolates. 

Similarly, highest (60.23 nmol C2H4 mg-1 protein h-1) 

nitrogenase activity was observed in DR2 (Fig. 1). The 

color zones (11-27 mm) have been reported by [10] in 

bacteria isolated from rhizosphere of sewan grass. The 

diazotrophy of isolates were further confirmed by 

appearance of blue zone in nitrogen free medium, 

followed by ARA. This finding is in conformity with the 

earlier reports of [20]. It has been argued that, nitrogenase 

activity is solely detectable upon growth in nitrogen free 

media, as it provides right niche for diazotrophic bacteria 

[19]. Thus, B. subtilis DR2 was identified as best nitrogen 

fixer. 

TABLE I. QUALITATIVE ASSESSMENT OF PGP ACTIVITIES IN THE 

ISOLATES (DR1-DR7) 
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DR1 + ++ + + - - - - 

DR2 +++ +++ +++ +++ +++ +++ + ++ 

DR3 + - - - - - - - 

DR4 ++ + ++ ++ - - - - 

DR5 + - - - - - - - 

DR6 + + + + - - - - 

DR7 +++ ++ ++ +++ 
+

+ 
++ - - 

Low (+); Medium (++); High (+++); Negative (-) 

2) IAA production: Screening and estimation 

Out of seven isolates, five (DR1, DR2, DR4, DR6 and 

DR7) tested positive for IAA production. It was 

remarkable that in all the positive isolates, IAA 

production was significantly higher in Trp+ as well as in 
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Trp- media. Isolate B. subtilis DR2 recorded maximum 

indole in both Trp+ (137.33 µg.ml-1) and Trp- (100.26 

µg.ml-1) media (Fig. 1). [1] reported IAA production in 

rhizospheric bacteria of banana, ranging from 89-108 

µg.ml-1 in 8 strains of fluorescent Pseudomonas and 50-

51 µg.ml-1 in two strains of Bacillus. However, [21] 

reported highest (11.49 µg.ml-1) IAA in Trp+ medium 

from the bacteria DPY-05 isolated from aerial roots of 

orchids, which is significantly lower than our findings. In 

the present work B. subtilis DR2 is also a rhizobacteria 

with significant IAA producing capability. In plants and 

bacteria, tryptophan has been identified as main precursor 

for IAA biosynthesis by two pathways, i.e., Trp-

dependent and Trp-independent. Production of IAA in 

both, Trp+ and Trp- media by B. subtilis DR2, suggests 

the presence of both pathways in the organism. 

Production of IAA in Trp- medium indicates the genetic 

makeup of the test organism, to be exploited for 

commercial use. Therefore, screening of organisms for 

their in vitro potential of auxin secretion could act as 

reliable tool for selection of efficient plant growth 

promoters. 

On the basis of optimum nitrogen fixing and IAA 

producing abilities, B. subtilis DR2 was selected for 

further investigation. 
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Figure 1.  Bacterial isolates showing Nitrogenase activity (nmol 

C2H4mg-1 protein h-1) and IAA production (µg.ml-1). 

3) Phosphate solubilization: Screening and 

estimation 

The DR2 gave positive test for phosphate 

solubilization in term of halo zone (15 mm) on PVK agar 

plate (Table I). In our earlier publication [18] DR2 

emerged as the most efficient phosphate solubilizer with 

48.16 mg.l-1 as soluble phosphate under optimized 

production conditions of 96 h of incubation at 30 °C. pH 

7.0, glucose and ammonium sulfate as carbon and 

nitrogen sources, respectively. The most efficient and 

dominant solubilizer belongs to genera Bacillus and 

Pseudomonas [22]. Moreover, amount to be solubilized 

depends on efficiency of strains. Phosphate solubilization 

is done by mono- and tri- carboxylic acids, mono- and di- 

carboxylic hydroxyl acids and some uncommon acids, 

which are secreted by various phosphate solubizing 

bacteria [23], [24]. Organic acids lower pH as they 

dissociate in a PH dependent equilibrium into their 

respective anions and protons [25].  

4) Siderophore production 

Siderophore production in DR2 was confirmed by the 

development of orange halo zones (31mm) (Table I). 

Reference [26] reported maximum siderophore 

production in Pseudomonas species, Ar-3-kul (20 mm) 

and Pn-1-kul (21mm) isolated from apple and pear, 

respectively. Siderophore producing microorganisms 

have biocontrol abilities, acting as chelator by binding to 

the available form of iron (Fe3+) in the rhizosphere, 

making it unavailable to the phytopathogens [27]. 

5) HCN production 

The production of HCN by DR2 is evidenced by the 

change in color of filter paper as deep brown (Table I). 

The color intensity is indicator of amount of HCN 

produced. Our findings are similar to those of [26], who 

reported maximum production of HCN, where color 

intensity ranged from yellow to brown in five bacterial 

isolates of apple and pear. Mechanisms controlling plant 

pathogens through HCN production by rhizobacteria 

includes, induction of plant resistance, blocking of 

cytochrome oxidase activity, increase in nutrient 

availability [18], [28], [29]. 

6) ACC deaminase activity 

DR2 was found to be positive for the production of 1-

aminocyclopropane-1-carboxylate deaminase (ACCD) 

and utilized the 1-aminocyclopropane-1-carboxylate 

(ACC) as a sole source of N in minimal medium (Table I). 

2-5% of rhizobacteria are PGPR, which solubilise 

phosphate, zinc and alleviate the various plant stresses by 

secreting ACC, thereby increasing plant growth, biomass 

and yield [30]. 

7) Antifungal activities 

 DR2 was able to inhibit the growth of Aspergillus sp. 

(8mm) and Fusarium sp. (9mm), showing immense 

antifungal activity (Table I). So, it could be 

recommended as biocontrol measure. 

D. Characterization: Phenotypic and Genotypic 

The isolate DR2 was identified as Bacillus subtilis 

DR2 and deposited in the gene bank, NCBI with 

accession no. DR2 KP455653 [18]. Reference [31] 

characterized genus Bacillus as growth promoter, because 

they produce auxins and gibberellins along with ability to 

fix nitrogen and solubilize phosphate, whereas according 

to [32], the most efficient and frequently encountered 

phosphate solubilizing bacteria belongs to the genus 

Bacillus or Pseudomonas. 

E. Optimization of Cultural Condition for IAA 

1) Effect of incubation period 

IAA production by B. subtilis DR2 in Trp+ medium 

started after 24 h, reached maximum at 96 h and then 

declined gradually. In Trp+ media, maximum (137.81 

µg.ml-1) IAA was produced at 96 h, which declined to 

17.07 µg.ml-1 at 144 h (Fig. 2). Reference [33] stated that 

the highest accumulation of IAA was observed after 96 h 

by B. subtilis WR-W2. Similarly, [34] also reported, the 

optimum IAA production after 96 h in strain 

Streptomyces sp. VSMGT1014 isolated from rice 
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rhizosphere. Our results are in agreement with their 

findings. However, in static culture, the ranges of 

optimum incubation period from 6 to 12 days have also 

been reported by [21]. The variations in incubation 

periods for maximum IAA production have been 

interpreted in terms of type (static/solid/broth) of culture, 

test organisms, attainment of stationary phase of growth, 

aeration, adsorption of growth regulators to the substrate 

particles, production of IAA degrading enzymes such as 

IAA oxidase and peroxidase, culture conditions, growth 

range, availability of substrates, variation in species level, 

etc., [19], [35], [36]. In our finding maximum IAA 

production at 96 h incubation, may be due to attainment 

of stationary growth phase and the decline after that 

period with several cited reasons in this discussion.  
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Figure 2. Effect of incubation preiod on IAA production (µg.ml-1) of B. 

subtilis DR2. 

2) Effect of temperature 

The B. subtilis DR2 exhibited linear correlation with 

temperature upto 35 °C and then gradually declined. The 

maximum (141.92 µg.ml-1) amount of IAA was recorded 

in Trp+ medium at 35 °C and minimum (20.88 µg.ml-1) at 

50 °C (Fig. 3). Optimum temperature 37 °C has been 

reported for IAA production for Rhizobium and Bacillus 

sp. [37] and in unidentified rhizobacteria isolated from 

aerial roots of epiphytic orchids [21]. However, 30 °C as 

optimum temperature for IAA production has been 

observed in Acetobacter diazotrophicus L1 isolated from 

sugarcane [35] and rhizospheric soil bacteria isolated 

from crop plants [38]. Reference [39], [40] have 

highlighted the importance of temperature in indole cell 

signaling, and this report confirms the earlier 

interpretations. 

3) Effect of pH 

One of the most important parameter for the growth of 

IAA producing organism and their metabolic activity is 

the pH of the production media [41]. In our investigation, 

maximum (158.79 µg.ml-1) indole production was 

observed at pH 7 in Trp+ media (Fig. 3). pH 7 has also 

been reported to be suitable for maximum IAA 

production by Pantoea agglomerans PVM [42], which is 

similar to the present finding. Reference [21] also reached 

to our finding in rhizobacteria isolated from epiphytic 

orchids. pH 7.2 in Rhizobium strain VMA 301 for 

elaborated high levels of IAA production have been 

reported by [43]. However, in other publications, pH 6 

has also appeared to be optimum in Klebsiella species 

isolated from the root nodules of Vigna mungo [44] and 

Acetobacter diazotrophicus L1 [35] for maximum indole 

secretion. In our finding high acidic and alkaline pH was 

not suitable for IAA production, which is supported by 

the previous findings. Moreover, as pointed by [45], the 

pH and temperature can affect the activity of enzymes 

involved in the biosynthesis of IAA. 
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Figure 3. Effect of temperature and  pH on IAA production (µg.ml-1) 

of B. subtilis DR2. 

4) Effect of carbon sources 

The carbon sources supplemented in broth media 

provide energy and improves co-factor recycling in the 

cells [46], thus contribute to the overall efficiency of IAA 

biosynthesis [47]. In our investigation, presence of 

mannitol as C-source in the medium produced maximum 

(160.85 µg.ml-1) indole followed by sucrose (148.44 

µg.ml-1) as compared to other carbon sources (Fig. 4). 

Different workers have optimized IAA production by 

different carbon sources as well as their combinations, eg., 

mannitol in B. subtilis WR-W2 [33], Arthrobacter agilis 

[6], sucrose in Acetobacter diazotrophicus L1 [35], 

mannitol and galactose [48] and mannitol and L-glutamic 

acid [49].  

5) Effect of nitrogen sources 

The effect of various inorganic nitrogen sources 

[(NH4)2SO4, NH4Cl, NaNO3, KNO3, NH4NO3, urea] in 

the Trp+ medium was evaluated. (NH4)2SO4 produced 

maximum (162.93 µg.ml-1) IAA, closely followed by 

NH4Cl, NH4NO3, NaNO3, KNO3 and lowest (13.59 µg.ml-

1) in urea (Fig. 4). Our findings are supported by the 

statement of [49] that the nitrogen source present in the 

production medium affects IAA production. Different 

nitrogen sources have been used for various organisms by 

several workers for IAA optimization. Reference [35] 

reported NH4Cl as most suitable for IAA production in 

Acetobacter diazotrophicus, whereas [38] found NaNO3 

for B. megaterium, KNO3 and peptone for Lactobacillus 

casei, B. subtilis and B. cereus, while NaNO3 and 

peptone for Lactobacillus acidophilus. However, in 

Pseudomonas putida UB1, maximum IAA was produced 

with (NH4)2SO4 as nitrogen source [47], which is in 

conformity with the present finding. Stimulation of IAA 

biosynthesis in root nodule bacteria of various 

leguminous plants were observed, when the organic 

International Journal of Pharma Medicine and Biological Sciences Vol. 7, No. 2, April 2018

©2018 Int. J. Pharm. Med. Biol. Sci. 23



nitrogen sources (L-asparagine and glutamic acid) were 

added [27].  
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Figure 4. Effect of different carbon and nitrogen sources on IAA 

production (µg.ml-1) of B. subtilis DR2 

6) Effect of L-tryptophan concentrations 

The IAA production increased with increasing 

concentrations of tryptophan. Minimum (26.40 µg.ml-1) 

and maximum (168.09 µg.ml-1) were recorded at 0.1 and 

1.2 g.l-1 of tryptophan, respectively, beyond which slight 

decline was observed (Fig. 5). Similar observations have 

been made, where 1.2 g.l-1 was optimum for IAA 

production in Acetobacter diazotrophicus L1 [35]. 

L-tryptophan acts as physiological precursor for IAA 

production by microorganisms. 80% of bacteria isolated 

from rhizosphere synthesize IAA through different 

pathways: (i) indole 3-acetamide (IAM), (ii) 

indole-3- pyruvic acid (IPA), (iii) tryptamine (TAM), (iv) 

indole-3-acetonitrile (IAN), (v) tryptophan side-chain 

oxidase (TSO), (vi) tryptophan independent pathways 

[50]. Microorganisms such as Streptomyces, 

Pseudomonas and Bacillus are capable of synthesizing 

IAA by utilizing L-tryptophan through IPA pathway [34], 

[51]. Bacteria also produce indole in absence of 

tryptophan, though, in lesser amount [39]. Enhanced 

production of IAA recorded in presence of tryptophan 

indicates that the organism utilizes tryptophan as a 

precursor for IAA biosynthesis. 
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Figure 5. Effect of tryptophan concentration on IAA production 

(µg.ml-1) of B. subtilis DR2. 

IV. CONCLUSION 

From this study, it is evident that rhizospheric soil of 

Eragrostis cynosuroides, a common weed can provide a 

rich source of plant growth promoting diazotrophic 

bacteria with inherent capacity to produce IAA in 

significant amount. Screening experiments were done to 

select the most active isolate for indole production along 

with other PGP activities like, N2 fixation, phosphate 

solubilization, siderophore production, etc. B. subtilis 

DR2 emerged as novel IAA producer with efficient plant 

growth promoting traits. For maximum in vitro IAA 

secretion, media components, accompanied by physical 

parameters (incubation time, temperature, pH, C-source, 

N-source and tryptophan concentration) were optimized. 

Maximum IAA was estimated in JNFbˉ media at 96 h 

incubation, 35±2 °C temperature, pH 7 in initial medium, 

supplemented with mannitol, ammonium sulfate and 1.2 

g.l-1 tryptophan. The production has been apparently 

related to stationary phase of growth. The knowledge 

acquired in this study suggests that B. subtilis DR2 

(KP455653) could be successfully used for large scale 

production of IAA by various fermentation processes and 

can also be used as biofertilizer, because of its several 

PGP activities. 
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