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Abstract—Gastric Cancer (GC) is one of the leading causes 

of cancer death worldwide. Drug repurposing plays a 

critical role in rapid drug discovery to resist the growth of 

tumor cells. In this project, we developed a computational 

drug repurposing pipeline (RepoGC) for gastric 

adenocarcinoma based on bulk-RNA transcriptomics 

profiles. With the gene expression profile of gastric cancer 

from the Gene Expression Omnibus (GEO), a total of 1004 

differentially expressed genes were identified and used for 

the generation of potential drug targets. Over 10,000 drugs 

from DrugBank were used as drug candidates. The multi-

omics networks, such as gene-gene interaction and gene-

target interaction network, were constructed to discover the 

core genes and targets for repurposed drugs and assist drug 

ranking. We performed the drug-target interaction 

prediction by deep neural network to prioritize the 

repurposed drugs. Finally, a combined drug-target 

interaction score was generated to rank drug candidates. 

Among the top-ranked drugs, such as Ursolic acid, 

Geldanamycin, and Parthenolide, we explored their 

completed clinical trial evidence and studies in the field of 

gastric cancer to cross validate the drugs. The study 

presents an efficient computational method to integrate 

transcriptomics data for rapid drug repurposing. The 

project highlights the potential of RepoGC to identify new 

drugs for gastric adenocarcinoma.  

Keywords—drug repurposing, machine learning, 

transcriptomics, gastric cancer 

I. INTRODUCTION

Gastric Cancer (GC) is the fifth common cancer and 

one of the major causes of cancer death globally, in 

which cells in the stomach grow uncontrollably and 

spread to other parts of the body [1]. More than one 

million people worldwide were diagnosed with gastric 

cancer every year (Fig. 1) [2].  

Many therapeutic strategies are available to alleviate 

the progression of gastric cancer, including chemotherapy, 

surgery, radiation therapy, and hormone therapy. The 

development of drugs is often accompanied with these 

therapies to combat cancer cells. Drug repurposing 

strategy is an effective approach to propose existing 

drugs to resist the growth of cancer cells. Drug 

repurposing offers significant advantages, including 
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reducing costs and saving time for drug development [3], 

[4], increasing success rates for bringing new treatments 

to diseases [4, 5], and the ability to target previously 

untreatable diseases (Fig. 2) [6]. Additionally, 

repurposing drugs that have already undergone extensive 

safety testing can reduce the risk of unexpected side 

effects and increase the speed of getting treatments to 

patients in need [7–10]. 

Gene expression induced drug repurposing is an 

effective method for drug discovery [1, 11]. It refers to 

the process of finding new therapeutic uses for existing 

drugs by analyzing changes in gene expression patterns 

caused by the drug in disease tissue [12]. Transcriptome 

data can help identify new therapeutic targets that have 

beneficial effects on targeted therapy. In addition, 

genome data and drugs can help researchers in reposition 

the use of studied drugs and study their molecular 

mechanisms by building a drug disease interaction 

network [13, 14]. The characteristics of a drug can be 

derived from three general types of data: transcriptome 

(RNA) proteome or metabolome data, chemical structure, 

and adverse event profiles [15]. Matching transcriptome 

signatures can be used for drug-disease comparison 

(estimating drug-disease similarity) [16] and drug-drug 

comparison [17]. In the comparison of drugs and diseases, 

the transcriptome characteristics of specific drugs are 

obtained by comparing the gene expression profiles of 

biomaterials before and after drug treatment, and then 

comparing the differential gene expression characteristics 

with the disease related expression profiles obtained 

through differential expression analysis of target diseases 

and health conditions. The differentially expressed genes 

provide candidates for drug targets. The interaction 

between drugs and their respective targets is the reason 

for therapeutic effects, which helps to overcome the 

diseases targeted by drug development. The target may be 

a protein (or gene) directly related to the disease, or a 

protein whose disturbance indirectly helps to offset the 

protein causing the disease [2]. In any case, the 

interaction is worth studying because the therapeutic 

effect of drugs is achieved through it. Due to the large 

number of drug targets, effective screening of drug target 

pairs is critical for ranking the repurposed drugs. Drug-

target interaction prediction is an efficient approach to 

rank the drug-target pairs by predicting the binding 

affinity. 
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Fig. 1.  Worldwide gastric cancer incidence and mortality in 2020. Panel A shows the estimated number of age-standardized incidence rates per 
100,000 persons based on data from GLOBOCAN 2020. Panel B shows the estimated age-standardized death rates per 100,000 population based on 
GLOBOCAN 2020 data. 

In this project, we developed a computational drug 

repurposing method for gastric adenocarcinoma based on 

transcriptome characteristics by designing an end-to-end 

computing pipeline (RepoGC). We used transcriptome 

data from the Gene Expression Omnibus (GEO) to obtain 

a total of 1004 differential genes in 389 GC samples for 

gastric adenocarcinoma. We identified core correlation 

and functional genes as potential drug targets through 

gene enrichment analysis by ShinyGO. We also inferred 

the maximum target of interaction through the Protein-

Protein Interaction (PPI) network. Finally, we selected 

the top candidate drugs with goals for further evaluation, 

explored and verified the feasibility of them through the 

iLINCs database. 

A 

B 
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Fig. 2.  The drug development for cancer by drug repurposing approach. The identification of drug candidates targeting the hallmarks of the cancer 

cell using drug repurposing enabled by recapitulative signaling networks. 

II. METHODS

A. Dataset

We selected four transcriptomics profiles related to

gastric cancer from the GEO database, namely: 

GSE13911 and GSE54129. GSE13911 dataset contains 

69 RNA-seq data with gene expression data from 38 

primary gastric cancer samples and 31 adjacent normal 

samples. GSE19826 dataset contains 27 RNA-seq data 

with gene expression data from 12 adjacent normal or 

tumor-matched gastric tissues and 3 normal tissue 

samples. GSE54129 dataset contains 132 RNA-seq data 

with gene expression data from 111 primary gastric 

cancer samples and 21 adjacent normal samples. 

GSE118916 dataset contains 30 RNA-seq data with gene 

expression data from 15 pairs of GAC tumor and adjacent 

normal tissues. We performed exploration, secondary 

sampling, and integration of the four microarray GEO 

datasets, all of which utilized the same platform GPL570. 

During the differential gene expression analysis of 

GSE13911, GSE19826, GSE54129, and GSE118916, we 

designated gastric tumor tissue as case group and 

compared it to noncancer tissue, which served as normal 

group. We obtained the genes with the most differentially 

expressed profiles between the selected groups and 

generated the corresponding volcano plots to visualize the 

results. Subsequently, by searching for corresponding 

DEG IDs on GEOexplorer, we obtained information on 

1004 Differentially Expressed Genes (DEGs) associated 

with these four gene expression profiles. The 

corresponding drug targets were mapped by using the 

genes on the Uniprot database. Over 10,000 drugs with 

structures were downloaded from DrugBank, which were 

used for virtual screening. 

B. Gene Enrichment Analysis

Gene enrichment analysis was used to map a set of

genes on a number of functional pathways, which aimed 

to identify biological functions and pathways associated 

with differentially expressed genes. It involves comparing 

the input gene list to curated gene sets from databases 

like GO or KEGG using statistical tests. Significant 

enrichment indicates potential biological relevance and 

provides insights into underlying molecular mechanisms. 

In the study, graphical gene set enrichment analysis was 

obtained by ShinyGO online [18]. For human genes, the 

program obtained pathway data from MSigDB [19], 

GeneSetDB [20], Reactome [21] and many verified or 
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predicted miRNA and TF target gene sources. ShinyGO 

used the pathview Bioconductor package to retrieve the 

path map from the KEGG web server [22] through API 

access to build a network view and hierarchical clustering 

tree with rich gene sets. ShinyGO plotted the 

chromosome positions of all genes in the user list, and 

performed statistical analysis on genome characteristics. 

Finally, the program plotted the distribution of GC 

content, as well as the length of coding sequence, 

transcript, and UTRs. A t-test was performed to 

determine any significant differences between the queried 

gene and all other background genes in the genome. After 

inputting the obtained protein information, the Pathway 

database was set to GO Biological Process, where the 

FDR cutoff was 0.05 and the Pathway size was 20 to 

2000. 

C. Generation of Drug Candidates from DrugBank

DrugBank (www.drugbank.ca) is an online database

containing molecular information about drugs, their 

mechanisms, interactions, and targets. It is a fully 

searchable web resource with numerous built-in tools and 

functionalities for viewing, sorting, and extracting drug or 

drug-target data, facilitating in-depth analysis of drug 

actions and mechanisms. DrugBank’s user-friendly 

interface and regular updates ensure access to the latest 

reliable information, making it an indispensable tool for 

researchers, clinicians, and the pharmaceutical industry in 

drug discovery, development, and therapeutic 

applications. In this study, all drugs with molecular 

information such as structure, clinical evidence were 

extracted. 

D. Featurization of Drug and Protein Targets

We convert drug structures from SMILE strings to

molecular fingerprints [23]. Extended-Connectivity 

Fingerprints (ECFPs) are a class of featurization that 

combines several useful molecular features [24]. They 

take molecules of arbitrary size and convert them into 

fixed-length vectors. ECFPs take molecules of many 

different sizes and use them all with the same model. 

Each element of the fingerprint vector indicates the 

presence or absence of a particular molecular feature, 

defined by some local arrangement of atoms. Each unique 

combination of these properties is a feature, and the 

corresponding elements of the vector are set to 1 to 

indicate their presence. The RDKit library was used to 

compute ECFP fingerprints for molecules. Seq2Vec is 

used to represent protein sequences as continuous vector 

embeddings in a high-dimensional space [25]. These 

embeddings capture semantic information about the 

amino acids and their relationships based on co-

occurrence patterns in a large dataset of protein 

sequences.  

E. Drug Target Interaction Prediction by DeepPurpose

DeepPurpose takes the Simplified Molecular-Input

Line-Entry System (SMILES) string and protein amino 

acid sequence pair of compounds as input [26]. Then, 

through a depth conversion function, the program maps 

the compounds and proteins to vector representations as 

described above. Then, the program will embed the 

learned protein and composite into the MLP decoder to 

generate a prediction, and then return the prediction score, 

representing the probability of binding between the 

predicted compound and protein. DeepPurpose will train 

five machine learning models and generate aggregate 

forecast results and descriptive ranking lists [26], 

including Support Vector Machine (SVM), logistic 

regression, Stochastic Gradient Descent (SGD), random 

forest, and K-Nearest Neighbors (KNN).  

III. RESULTS

A. Framework of Drug Repurposing for Gastric Cancer

Fig. 3 shows the Framework of drug repurposing for

gastric cancer. By accessing the GEO database, we 

obtained the multiple transcriptomics data. We reported a 

total of 1004 differentially expressed genes related to 

gastric cancer and downloaded over 10,000 drugs with 

structures from DrugBank. The corresponding drug 

targets were mapped by using the genes on the Uniprot 

database. We then performed functional analysis to 

obtain the pathway enrichment using the differentially 

expressed genes. Next, we used the improved 

DeepPurpose algorithm to predict the interactions 

between drugs and binding targets. Through DeepPurpose, 

we obtained the binding score data of 3 million DTI, 

among which we selected the top 10% as representative 

analysis and drug pool. Firstly, through the frequency of 

drugs, we found the top ten drugs with the highest 

frequency in the pool. Secondly, by using protein-protein 

interaction network, we chose the targets that have the 

largest number of degrees since they have more 

interactions with proteins. Finally, we explored the 

clinical evidence via iLINCs signature matching for drug 

development of gastric cancer of those drugs and targets 

by literature referencing. We selected the top 10% of the 

drugs with the highest score and selected the most 

common 10 drugs by comparing their incidence. 

B. Differentially Gene Expression Analysis and

Functional Analysis

We identified 1004 Differentially Expressed Genes 

(DEGs) and enriched 989 disrupted functional pathways 

by ShinyGO. Fig. 4 shows the DEG analysis and volcano 

plot for GC patients and healthy control group using data 

GSE13911 and GSE54129. It is observed that significant 

differentially expressed genes exist between gastric 

cancer tissue and healthy control.  

We then performed functional enrichment analysis to 

explore whether the identified DEGs were involved in the 

molecular networks related to the pathogenesis of GC. As 

shown in Fig. 5A and 5B, we conducted enrichment 

analysis using the KEGG pathway and GO molecular 

function for the DEGs. The bar graph displays 

significantly enriched functional categories sorted by p-

values and enrichment score. Enrichment analysis 

conducted on the DEGs revealed a total of 8 and 20 

significantly enriched in the KEGG and GO pathways, 

respectively. In the development of GC, the most 
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significantly altered pathways in KEGG include “Protein 

digestion and absorption”, “Gastric acid secretion”, and 

“Hippo signaling pathway”. These pathways have been 

convincingly established to have a correlation with cancer. 

In the case of Gastric acid secretion, insufficient gastric 

acid was implicated in carcinogenesis [27]. Regarding the 

Hippo signaling pathway, its dysregulation can facilitate 

the occurrence and progression of gastric cancer [28]. In 

addition, the most significantly altered pathways in GO 

molecule function include “Phenanthrene 9, 10-

monooxygenase activity”, “Trans-1,2-dihydrobenzene-

1,2-diol dehydrogenase activity”, “Indanol 

dehydrogenase activity”, and “P-type potassium: proton 

transporter activity”. Finally, we generated a network 

diagram using enrichment analysis to visualize the 

relationships between enriched pathways for these genes. 

The associations between these pathways were analyzed 

based on the overlapping genes. If two pathways (nodes) 

share 20% (default) or more genes, they are considered 

connected. 

Fig. 3.  Framework of gene expression-induced drug repurposing for gastric cancer. 

 
 

 

International Journal of Pharma Medicine and Biological Sciences, Vol. 13, No. 4, 2024

116

Fig. 4. Volcano plots and Mean Difference (MD) plots for GSE13911 (A, B) and GSE54129 (C, D). The volcano plot illustrates statistical 

significance (−log10 p-value) in relation to the magnitude of change (log2 fold change). The red and blue dots reveal the up- and down-regulated 
DEGs, the black dots reveal non-significant genes. On the other hand, the MD plot displays the log2 fold change compared to the average log2 
expression values, providing a useful visualization for identifying differentially expressed genes.



A 

B 

C 
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Fig. 5.  Functional enrichment based on the differentially expressed genes. Panel A and B show the pathway enrichment using the KEGG (A) and 

GO (B) pathway database. Panel C and D show the pathway network using the KEGG (A) and GO (B) pathway database. The circumference of the 
nodes is proportional to the size of the gene set. The color intensity of the nodes is proportional to their enrichment significance. The thickness of the 
edges is proportional to the degree of overlap in gene sets. 

C. Exploration of Drug Candidate Patterns 

Using DrugBank, we have generated the 11,912 drug 

candidates. Fig. 6A illustrates the distribution of drug 

types, where the horizontal axis represents the drug 

categories, and the vertical axis represents the quantity. It 

is evident that the majority of candidate drugs are in the 

experimental or research stages. Fig. 6B displays the drug 

molecular categories of the candidate drugs, with the 

horizontal axis representing the quantity and the vertical 

axis representing the drug categories. It can be observed 

that Organoheterocyclic compounds, Benzenoids, and 

Organic acids and derivatives are the three most 

frequently occurring categories. 

 

D 

Distribution of drug types 
A 
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Fig. 6.  The distribution of drug candidates from DrugBank. Panel A shows the distribution of drug clinical phase. Panel B shows the distribution of 
drug molecule classes. 

D. Generation of Drug Candidates by DeepPurpose and 

iLINCS 

We utilized DeepPurpose to measure drug-target 

interactions, specifically the binding of drug molecules 

with protein targets. By inputting Simplified Molecular-

Input Line-Entry System (SMILES) strings for drugs and 

amino acid sequences for targets, the model generates a 

binding score for each drug. After selecting the top 10% 

of drug-target interaction structures and ranking them, we 

obtain the results for candidate drugs. L1000 is a dataset 

based on the Library of Integrated Network-based 

Cellular Signatures (LINCS), encompassing over one 

million gene expression profiles of human cell lines 

subjected to chemical perturbations. L1000CDS2 serves 

as a web search engine based on L1000 signatures, 

offering prioritized pairs of small molecule features. 

Leveraging our previously acquired gene expression data, 

we input our own gene expression signature and 

employed L1000 to predict potential candidate drugs 

capable of reversing gene expression features (Fig. 7). 

Based on the differentially expressed gene signature 

mapping, 17 drugs were found to be highly correlated 

with the treatment of gastric cancer.  

 

Distribution of drug molecule classes B 

A 
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Fig. 7.  The process employing the L1000 Characteristic Direction Signature Search Engine (L1000CDS2) for drug candidate prioritization. Panel A 

showcases the main interface post input of up-regulated genes and down-regulated genes, wherein the configuration options entail selecting small 
molecule signatures contrary to the input. Panel B presents the resultant data obtained post-search. 

TABLE I.  TOP DRUG CANDIDATES GENERATED BY DEEPPURPOSE AND ILINCS 

Drug Name Protein names Gene Names Target Name 
Binding 

Score 

Validation by 

experimental study 

Ursolic acid 
Monofunctional C1-tetrahydrofolate 

synthase, mitochondrial 
MTHFD1L Q6UB35 7.09 [29] 

Testosterone propionate Protein-tyrosine-phosphatase PTPRS G8JL96 6.87 N/A 

Geldanamycin Integral membrane protein GPR155 GPR155 Q7Z3F1 6.52 [30] 

Levonorgestrel Formate--tetrahydrofolate ligase MTHFD1L B7ZM99 6.52 N/A 

Radicicol 
Monofunctional C1-tetrahydrofolate 

synthase, mitochondrial 
MTHFD1L Q6UB35 6.31 N/A 

Parthenolide Protein-tyrosine-phosphatase PTPRS G8JL96 6.29 [31] 

Selumetinib Formate--tetrahydrofolate ligase MTHFD1L B7ZM99 6.16 [32] 

Tivantinib Kinesin family member 26B KIF26B B7WPD9 6.13 [33] 

Trametinib Protein-tyrosine-phosphatase PTPRS G8JL96 6.08 [34] 

Vorinostat Kinesin-like protein KIF26B KIF26B Q2KJY2 6.05 [35] 

Isoliquiritigenin 
Protein tyrosine phosphatase, receptor 

type, S, isoform CRA_a 
PTPRS D6W633 6.03 [36] 

Dasatinib 
Monofunctional C1-tetrahydrofolate 

synthase, mitochondrial 
MTHFD1L Q6UB35 5.91 [37] 

Vemurafenib Nidogen-2 (NID-2) NID2 Q14112 5.82 [38] 

Tegaserod Serine/threonine-protein kinase 3 STK3 KRS1 MST2 Q13188 5.78 [39] 

Afatinib Nucleolar GTP-binding protein 1 GTPBP4 D2CFK9 5.77 [40] 

Canertinib Kinesin-like protein KIF26B KIF26B Q2KJY2 5.77 N/A 

Crizotinib Collagen, type XII, alpha 1 COL12A1 B9EJB8 5.69 [41] 

 

Then we further pooled out the drug-target interaction 

scores and obtained the top ranked drug list as shown in 

Table I. Furthermore, we conducted a reverse search 

using existing candidate drugs against other gastric 

cancer disease signatures. By combining these datasets, 

we identified signature profiles that we believe could 

modify the gastric cancer gene expression signature. 

E. Repurposed Drug of Gastric Cancer 

As a result, we have identified several candidate drugs 

with repositioning potential, including Ursolic acid, 

Testosterone propionate, Geldanamycin, Levonorgestrel, 

Radicicol, Parthenolide, Selumetinib, Tivantinib, 

Trametinib, and Vorinostat. Most of the drug candidates 

have prior studies to show the feasibility that they can be 

used for gastric cancer. Among these drugs, Ursolic acid, 

a pentacyclic triterpenoid, effectively inhibits the growth 

of gastric cancer cells in vitro, significantly increasing 

apoptosis rates in both in vitro and in vivo treated tumor 

cells [29]. Geldanamycin, an ansamycin antitumor 

antibiotic, suppresses Hsp90 function and induces 

apoptosis in human gastric cancer cells by affecting 

B 
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oncogenic kinases [30]. Parthenolide, a small molecule 

cancer inhibitor, inhibits cell growth, enhances apoptosis, 

and sensitizes cells to DPP treatment in gastric cancer 

cells [31]. Selumetinib, a drug used for treating type I 

neurofibromatosis in children, demonstrates effective 

therapeutic efficacy and tolerable safety in GC patients 

with MEK features or RAS gene alterations [32]. 

Tivantinib, an experimental small molecule anticancer 

drug, exhibits anticancer activity in GC cells by inhibiting 

c-MET or VEGFA amplification, thereby suppressing the 

VEGF signaling pathway and inducing apoptosis in 

gastric cancer cells [33]. Trametinib, a kinase inhibitor, 

restrains the development and metastasis of Gastric 

Neoplasia by targeting MAPK pathways [34]. Vorinostat, 

primarily utilized for treating cutaneous T-cell lymphoma, 

an histone deacetylase inhibitor, triggers death and 

autophagy in gastric cancer cell lines, presenting a 

potential therapeutic agent for gastric cancer [35]. 

IV. CONCLUSION 

We have developed a transcriptome-based gastric 

adenocarcinoma computational drug repurposing pipeline. 

Initially, we selected four gene expression profiles related 

to cancer from the GEO database, comprising 258 RNA-

seq datasets. By searching the corresponding DEG IDs on 

GEOexplorer, we obtained information on 1004 DEGs 

associated with these four gene expression profiles. 

Subsequently, we utilized the Uniprot database to identify 

the respective drug targets. For virtual screening, we 

downloaded over 10,000 structurally characterized drugs 

from DrugBank. Utilizing a deep neural network, we 

improved the prediction of drug-target interactions and 

constructed multiple omics networks. This approach 

facilitated the identification of core genes and targets for 

drug repurposing. We further explored the clinical trial 

evidence for these drugs in the field of cancer, assisting in 

drug ranking. Notably, Ursolic acid, Geldanamycin, 

Parthenolide, Selumetinib, Tivantinib, Trametinib, and 

Vorinostat emerged as the top-ranking drugs and were 

validated by published studies. This study demonstrates 

the potential of RepoGC in identifying novel drugs for 

gastric adenocarcinoma and provides an effective 

computational method for integrating transcriptomic data 

to facilitate rapid drug repurposing. 
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