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Abstract—In neurosurgery to remove brain tumors, 
DICOM data, a medical imaging standard, is generated 
preoperatively using CT and MRI. This data is used for 
surgical planning. However, brain deformities, known as 
brain shifts, can occur during surgery and deviate from the 
preoperative surgical plan. Deviations from the surgical 
plan due to brain shift are a life-threatening problem as they 
reduce the success rate of surgery. Brain shift has not yet 
been elucidated and DICOM data acquired by MRI and CT 
for surgical planning and post-operative management are 
stored and archived at hospitals and discarded after a 
certain period. To address these issues, we started research 
around 2018 with the goal of modelling brain shifts. This 
will enable surgical planning to take brain shifts into 
account during pre-operative conferences. The 
corresponding OpenCV feature points are extracted from 
the pre-operative and post-operative DICOM and the brain 
shift is extracted from their motion vectors. Here, the 
feature point extraction algorithms BRISK, AKAZE, ORB, 
and SIFT are compared and it is experimentally confirmed 
that BRISK and AKAZE have better brain shift extraction 
capability than the other two algorithms.   

Keywords—brain-shift, Digital Imaging and 
Communications in Medicine (DICOM), OpenCV’s feature 
point 

I. INTRODUCTION

The brain is the most important organ in the human 
body and unnecessary damage during surgery must be 
avoided to prevent post-operative complications and 
sequelae. The brain must therefore be handled skillfully. 
In general, it is difficult to identify the boundary between 
normal and abnormal areas during surgery. For example, 
surgeons may overdo it when removing malignant tumors, 
reducing patient survival. Also, leaving too much of the 
malignant tumor may lead to recurrence. 

Generally, before neurosurgery, Computed 
Tomography (CT) or Magnetic Resonance Imaging (MRI) 
is used to produce brain images of the patient using 
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(DICOM) (two-dimensional top and bottom greyscale 
124 images stacked vertically) are captured as DICOM 
images. These images are represented in a three-
dimensional hierarchical structure of grey-valued voxels; 
using CT and MRI techniques, malignant tumors and 
aneurysms can be detected, along with blood vessels and 
nerves. During surgery, the neurosurgical navigation 
system shows the doctor the relationship between the site 
of the malignancy and the blood vessels and nerves. The 
relationship between the site of the malignancy and the 
blood vessels, as well as the position and posture of the 
scalpel, can be monitored in real time. The position and 
posture of the scalpel can be determined in real time. 

However, as the brain is a soft organ, the brain itself is 
deformed during surgery, resulting in brain misalignment, 
where the image of the brain taken before surgery does 
not match the actual brain during surgery. Brain 
misalignment is a phenomenon in which the brain is 
deformed so that it sinks. Brain misalignment is a 
phenomenon in which the brain is deformed in such a 
way that it sinks. When spinal fluid is lost, the brain sinks 
towards the base of the skull. The brain sinks towards the 
base of the skull. In addition, when a malignant tumor or 
cerebral thrombus is removed, the surrounding tissue 
moves into the cavity. As a result, the position and 
morphology of the malignant tumor changes as follows. 
This is known as brain shift. From this brain shift, the 
position and morphology of the malignant tumor change 
during neurosurgery, reducing the accuracy of navigation 
guidance. Current neurosurgical navigation systems are 
unable to accurately predict and communicate this brain 
shift to the doctor. This can lead to surgical errors. This is 
the main concern of the co-principal investigators, 
neurosurgeons, in surgery. 

Therefore, in this study, to build a model of the brain 
shift, the actual brain shift is extracted from a pair of 
preoperative and postoperative DICOMs; feature points 
extracted by OpenCV from the DICOMs are used as 
landmarks and the actual brain shift is extracted from 
their movements. To solve this problem, we aimed to 
develop a neurosurgical navigation system. The objective 
was to develop a neurosurgical navigation system. We 
aimed to create a brain model. Previous organ models 
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were not backed by actual intraoperative data. Previous 
organ models were not backed by actual intraoperative 
data, and the plausibility of their deformations had not 
been evaluated [1–8]. Our goal was to create a brain 
model with deformations like intraoperative data. We 
aimed to create a brain model with deformations like 
intraoperative data by quantitatively detecting brain 
misalignments from pre- and postoperative brain DICOM 
images. In addition, we aimed to create a brain model 
with a deformation similar to that of intraoperative data 
by quantitatively detecting brain misalignment from pre- 
and postoperative brain DICOM images recorded at 
multiple hospitals. Therefore, over the past few years, we 
have developed a feature point detection algorithm [9–16] 
(e.g., AKAZE), an orientation feature From Accelerated 
Segment Test (FAST), a rotated Binary Robust 
Independent Feature (BRIEF), Oriented FAST and 
Rotated BRIEF (ORB), Binary Robust Invariant Scalable 
Key points (BRISK), Scale Invariant Feature Transform 
(SIFT), etc.) were used to extract a mapping set of similar 
feature points from the preoperative and postoperative 
DICOMs, which were employed as brain shifts. However, 
the correctness of this extracted brain shift could not be 
confirmed [17, 18]. 

Therefore, we developed an algorithm to artificially 
deform DICOM images locally [19]. Subsequently, as 
part of this study, we identified local brain misalignments 
detected by the feature point matching algorithm. Local 
brain misalignments detected by the feature point 
matching algorithm were identified. were identified. 
Based on this, the optimal feature point detection 
algorithm for detecting local brain shift was determined 
[20]. In this paper, we precisely check the best algorithm 
and its parameters for detecting an artificial brain-shift. 

The structure of this paper is as follows. Section II 
provides an overview of our artificial brain shift 
algorithm for DICOM. Section III describes our brain 
shift detection algorithm for two DICOMs. Section IV 
describes experiments and evaluation. Section V presents 
conclusions. 

II. ARTIFICIAL BRAIN SHIFT CREATION ALGORITHM FOR 

DICOM 

To assess the correctness of the results of the brain 
shift detection algorithm, a method to artificially generate 
brain shifts was developed (Fig. 1). To support future 
brain shift modelling, Unity with its physics engine was 
used for development. Artificial brain shifts retain the 
coordinates of the deformation points before and after 
deformation, so it is possible to clearly identify which 
part of the brain has been deformed and to what extent. 
Therefore, the quality of the brain shift detection 
algorithm can be evaluated by comparing the results of 
the brain shift detection algorithm with the coordinates of 
the deformation points retained by the artificial brain shift. 
An advantage of our artificial brain shift generation 
method is that the deformation is feature point-based, so 
the feature points remain after the deformation. Since our 
brain shift detection system assumes that feature points 
remain after brain deformation, we develop an artificial 

brain shift system that is capable of feature point-based 
deformation. Here, we consider AKAZE, BRISK, ORB 
and SIFT as feature point detection algorithms. 

 
Fig. 1. How artificial brain shift works. 

To create an artificial brain shift, a feature inspection is 
first performed on the preoperative DICOM (Fig. 1). The 
feature point coordinates obtained from the feature point 
inspection are retained as the initial positions. The feature 
point coordinates are defined as x (0 ≤ x ≤ M), where x  
(0 ≤ x ≤ M) is the x-th abscissa of the grid point and y (0 
≤ y ≤ N) is the y-th ordinate of the grid point (Eqs. (1–3)). 
For compatibility with OpenCV and to facilitate 
calculation, the top-left edge is taken as the starting point 
(0, 0). However, in the Unity coordinate system, the y-
axis becomes more negative towards the bottom. 
Therefore, the y-coordinate of the intersection point in 
Eqs. (1–3) is subtracted from the length of the 
preoperative DICOM image. 

Vertical length per lattice Dh = height/N (1) 

Horizontal length per lattice Dw =width/M    (2) 

       Coordinates Pn of lattice points (x-th, y-th)  
 = (Dw × x, -height + Dh×y)                  (3) 

Both feature points and grid points are operation points 
for deforming DICOM images. However, the edges of the 
DICOM image do not need to be deformed. Therefore, if 
x is the x-th abscissa of a grid point and y is the y-th 
ordinate of a grid point, no operation is accepted if x = 0, 
y = 0, x = M, and y = N. 

After the coordinates of the grid points have been 
added, they are combined with the initial positions to 
form calculation points and construct a 3D polygon mesh. 
The polygon mesh is constructed using Delaunay 
triangulation. Delaunay triangulation produces a set of 
triangles with the calculation points as vertices (Fig. 2). 
The polygon mesh is constructed from these triangles. 

Polygon meshes are created according to Unity's 
polygon mesh generation rules (mainly vertex 
coordinates, uv coordinates, and the order of vertices 
forming a triangle); in Unity, each vertex is assigned a 
number 0, 1, or 2. A triangular polygon mesh is 
constructed by assigning each vertex a number 0, 1, or 2 
and connecting the vertices in order from smallest to 
largest. The order in which the polygon mesh is generated 
determines whether it faces left or right, so the viewpoint 
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and front-back relationship must be considered when 
generating the polygon mesh. 

 
Fig. 2. Delaunay triangulation and polygon mesh being generated. 

In Unity, vertex meshes cannot be manipulated directly 
in the GUI. Therefore, a separate object must be prepared 
as a GUI and synchronized with the vertex mesh by code. 
The object of the operation point is generated from the 
coordinates of the initial position of a combination of 
feature points and grid points. During the movement 
operation of this object, the coordinates of the operation 
points are synchronized with the coordinates of the vertex 
mesh to deform the mesh (Fig. 3). When deforming, the 
surrounding operation points are also deformed in 
conjunction. Therefore, it was considered burdensome to 
record and process the surrounding operation points for 
each individual operation point. Therefore, deformations 
were performed on all points so that the strength of each 
deformation decreases as the distance from the operation 
point, the center of the deformation, increases. As a result, 
the distant operation points were hardly deformed and the 
surrounding operation points were hardly deformed 
except at the surrounding operation points. When an 
operation point is deformed, all pixels in the mesh with 
the deformed operation point as the vertex mesh are 
deformed along the mesh, regardless of whether the 
deformation is a central deformation (around the 
operation point) or a connected deformation (around 
points away from the operation point). Let P be the 
operation point that performed the deformation operation, 
and let P be its vector and Qn be the surrounding 
operation points, then the deformation vector of the 
surrounding operation points Qn is as in Equation (4). 

The magnitude of deformation of the surrounding 

operating point f(n) = the magnitude of vector P/√(the 

distance between P and Qn). 

Deformation vector Qn of surrounding operating points = 
the unit vector of P × f(n)          (4) 

 

Fig. 3. Artificial brain shift generated by mesh deformation. 

TABLE I. ALGORITHMS AND PARAMETERS EVALUATED 

AKAZE BRISK ORB SIFT 

Detector 
threshold 

AGAST 
detector 

threshold 

FAST detector 
threshold 

Threshold of the 
boundary meeting 
where no feature 

is detected 

0.001 30 

10 21 

none 

10 31 

10 41 

0.0005 20 

20 21 

20 31 

20 41 

0.0001 10 

30 21 

30 31 

30 41 

 
Feature point extraction is performed on the brain 

DICOM. To investigate how each algorithm varies with 
the threshold value, the threshold values are listed in 
Table I. To avoid unnatural deformations, the mesh was 
divided into a grid and the mesh granularity was 
increased. The number of divisions can be set arbitrarily, 
but in our experiments, we used three different artificial 
brain shifts: three different artificial brain shifts were 
used: 10×10, 20×20, and 30×30 respectively. Finally, a 
virtual DICOM with artificial brain shift was created by 
shifting arbitrary points. The number of feature points 
obtained from the real and virtual DICOMs was 
investigated. The results showed that the feature points 
obtained from BRISK and AKAZE were like those 
obtained from the brain DICOM. The distribution of 
feature points for both algorithms was uniform; BRISK 
and AKAZE were rated as more suitable than the other 
two algorithms. This is because the more feature points 
an artificial brain shift has, the greater the degree of 
freedom of deformation is. 

III. BRAIN SHIFT DETECTION ALGORITHM FOR TWO 

DICOMS 

Brain shift is detected by measuring the amount of 
movement of each feature point in the pre-operative and 
post-operative DICOM images by feature point matching. 
If the pre-operative feature points remain after surgery, 
the brain shift can be detected by measuring the amount 
of movement of the pre-operative feature points. The 
algorithm for detecting the brain shift is shown in Fig. 4.  

 
Fig. 4. How the brain shift detection algorithm works. 
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Brain shift is detected by measuring the amount of 
movement of each feature point in the preoperative and 
postoperative DICOM images by feature point matching. 
If the preoperative feature points remain after surgery, the 
brain shift can be detected by measuring the amount of 
movement of the preoperative feature points. The 
algorithm for brain shift detection is shown in Fig. 4. 

This is an example of a point that should have been 
matched with P'1 but was mistakenly matched with P'n. 
The numbers above the points in Fig. 5 indicate the 
degree of similarity. The smaller the number, the higher 
the similarity and the more likely it is that they are at the 
same point. In this example, the similarity of the same 
point, P1', is higher than the other points, but this is 
because the feature values have changed due to the 
deformation, indicating that another point was incorrectly 
matched. In this case, the extremely large displacement 
(length of the red arrow in Fig. 5) is an error and is not 
drawn. 

 

Fig. 5. Feature point matching error. P: Feature points obtained from 
preoperative DICOM; P': P moved by surgery (in postoperative 
DICOM); P'': feature point detected as P' by the feature point detection 
algorithm. 

Rendering is expressed in the form of a color tile map, 
and the number of tile map divisions can be set to N for 
the vertical direction and M for the horizontal direction. 
Tile map rendering consists of three layers: the Draw 
layer, which writes color information on the amount of 
movement of the DICOM image; the Tile layer, which 
considers the influence of the surroundings when moving 
the image; and the Mono layer, which holds the amount 
of movement per px without considering the influence of 
the surroundings. In the draw layer, the preoperative draw 
layer matches the feature points of the preoperative and 
postoperative Dycom images and calculates the amount 
of movement of each site from the Euclidean distance 
between the preoperative and postoperative feature points. 
The amount of movement is stored in the Mono layer. In 
the tile layer, the height and width of each tile are 
calculated from the number of divisions N and M in the 
tile map. As tiles are rectangular, the range of each tile is 
calculated by calculating the coordinates of the four 
vertices. The influence on the surrounding tiles is then set 
based on the amount of movement between each feature 
point that a thing has. The influence is attenuated for each 
neighboring tile by an arbitrary factor with respect to its 
own movement. In this case, influence is set to decay by a 
factor of 0.5 for each tile moving away from the thing. 
However, as brain shifts become more apparent in the 
future, appropriate values will need to be set. As the 
colors should shift more from blue to red, the cyclic HSV 
color space is used to calculate the hue position from the 
shifts and effects to determine the rendered colors. 

Finally, based on the results of feature point matching, 
the direction of movement is calculated from the vector 
between the two feature points before and after surgery 
and an arrow is drawn (Figs. 6 and 7).  

 
Fig. 6. Brain shift detection algorithm. 

 
Fig. 7. Overall view of this study. 

IV.  EXPERIMENTS AND EVALUATION 

In this study, the following environment (OS Windows 
10, CPU intel core i7 12700K, GPU RTX3080, Software 
used Unity 2021.3, Assets used OpenCVforUnity, 
DelaunayUnity) was used to search for the optimal 
feature point extraction algorithm was explored. In this 
section, each feature point detection algorithm is 
evaluated for a given set of initial parameters. First, the 
accuracy of the BRISK-derived artificial brain shift is 
evaluated using the accuracy evaluation method based on 
the maximum error and false positive rate of each feature 
point detection algorithm. The parameters are the initial 
values given in Table II and SIFT has no parameters. 

TABLE II. INITIAL PARAMETER VALUES FOR EACH ALGORITHM 

Name 
Default value for 

parameter 1 
Default value for 

parameter 2 

AKAZE 
Detector threshold 

(0.00100000004749745) 
– 

BRISK 
AGAST detector 

threshold (30) 
– 

ORB 
FAST detector threshold 

(20) 

Threshold of 
boundary at which 

no feature is 
detected (31) 

SIFT – – 
 

Table III shows the results of an experiment in which 
the parameters of each algorithm were given initial values 
for a single BRISK-derived artificial brain shift. The 
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maximum error for each algorithm is large, especially for 
ORB. 

TABLE III. ACCURACY EVALUATION OF EACH ALGORITHM WHEN 
GIVEN INITIAL VALUE PARAMETERS 

Name 
Maximum error 

(mm) 
False positive 

rate (%) 

AKAZE 21 0 

BRISK 17 0 

ORB 42 0 

SIFT 22 – 

 

 

Fig. 8. Overlap with the answer when the AKAZE detector is given an 
initial value. 

 

Fig. 9. Overlap with the answer when initial values are given to the 
AGAST detector in BRISK. 

 

Fig. 10. Overlap with the answer when the ORB is given an initial value. 

 
Fig. 11. Overlap with SIFT answers. 

Figs. 8–11 show these results in feature point 
coordinates. The overlap between x detected by the 
feature point detection algorithm and the post-operative 
feature point + retained by the artificial brain shift is 
shown for each of the four algorithms: the greater the 
overlap between x and x, the more deformations have 
been tracked and detected. In other words, the better the 
feature point detection algorithm, the more purple + 
(post-operative feature point +) is lost. The results in Figs. 
8–11 show that BRISK is the best, ORB is the worst, and 
SIFT and AKAZE are in between. However, this is a 
result and SIFT has no adjustment parameters, whereas 
AKAZE has adjustment parameters and can still be 
adjusted. 
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V. CONCLUSIONS

In the accuracy assessment of each algorithm, BRISK 
had the smallest maximum error given the initial 
parameters. This was because the feature detections were 
evenly distributed throughout the brain. On the other 
hand, ORB had an uneven distribution of feature 
detection and failed to detect deformations in some parts 
of the brain. These results may have affected the 
maximum error, and the maximum error of AKAZE was 
like that of SIFT. However, SIFT cannot accurately 
detect brain deformations because it has no parameters. 
AKAZE, on the other hand, can change its results in the 
future by adjusting the parameters. 
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