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Abstract—Earlier behavioural studies have shown a social 

and cognitive difference between European Americans and 

East Asian people. Westerners are thought to be more 

focused on object information, while the East Asians are 

more sensitive to context or relationship information. We 

focused on two neural studies and argued that this cross-

cultural difference phenomenon could be explained by the 

attention mechanism. We applied the active inference 

framework to distinguish two aspects of attention, namely, 

the gain control and epistemic value. The former is involved 

in the exogenous, low-level response, and this automatic 

attention could account for the findings that are culturally 

favoured, such as change blindness and field dependence-

independence distinction. The latter is involved in the 

endogenous, high-level responses, which is identical to the 

Bayesian surprise and could be measured by the P3 

component. This epistemic value may account for tasks 

where no behavioural differences were found. Both the 

exogenous and endogenous value is used to minimise free 

energy in order to maximise the evidence of the generative 

model.   
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I. INTRODUCTION 

Social cognition studies found that there is a distinction 

between Eastern and Western reasoning mode. That is, a 

holistic tendency of the former and an analytic style of the 

latter [1]-[7]. This cognitive difference is deemed as the 

main attribute to the beliefs about the nature of the world 

and is hypothesised as a cause of allocating attention 

resources in particular ways. This means that people from 

different cultural groups may see the world in different 

ways, which means that our perception is contextually (or 

culturally) dependent. Behaviour research have listed a 

series of qualitative distinctions in metacognition, such as 

the field dependence-field independence distinction [8], 

which means the degree to which the perception of an 

object is influenced by the context it is embedded in., or, 

more simply the ability of disassociating the foreground 

objects with the background; The hindsight-bias problem 

which states that people react to prediction errors less 

surprisingly. However, in comparison to the Westerners, 

Eastern people are remarkably less surprised by the 

unusual results of the events than they should be and 
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believed they had predicted the turning at the first place [5]. 

Besides, research also report the Change-Blindness 

phenomenon, an attentional effect that influences the 

perception process for people of different cultures. People 

failed to recognise marked changes around even when they 

are asked to find out the changes in the visual filed [9]. 

Overall, East Asian cultures emphasise the practices of 

interdependence, resulting in the consequences that they 

are less likely to distinguish the objects from the 

background, more sensitive to contextual information 

changes [10], and more possibly to overestimate the 

probability they would have predicted the results if they 

were told the outcome and more field-dependent in the 

Road-and Frame test [4]. Whereas European Americans 

emphasise practices of independence, so that they always 

show big surprise when the prediction is violated [11]; they 

constantly fixate more on focal objects and they detect 

object changes more easily than changes in background. 

However, in much strictly designed neuronal 

experiments [12]-[14], no such behavioural differences 

were found when participants were instructed to do 

culturally non-preferred tasks, albeit slower and less 

accurate meanwhile. Researchers from the neuroscience 

camp argue that culture does influence brain function 

powerfully by biasing towards certain neuronal pathways 

and a violation of this bias may lead to an increased brain 

activity in areas that are associated with attention. This 

raises the issue of how attention entrains the decision-

making process and leads to the overall equally efficient 

global behaviour. Given cultural practices do facilitate 

certain decision-making process (i.e., faster reaction time 

in culturally preferred condition in comparison to 

culturally non-preferred condition), which mainly unfolds 

in basal ganglia circuits by computing the difference 

between the values of the direct and indirect neuronal 

pathways [15], [16], there may be a unified theorem that 

mediates the habitual preference and attention. To our 

knowledge, active inference is the best candidate referring 

to, since basically, it balances the priors and uncertainty 

and offers a frame of inferencing optimal future actions 

which is crucial to the decision-making process. This 

decision process may lie at the core of the cross-cultural 

effect. Although the whole theorem may look complex, we 

can simply take its essence, that is, it emphasises the 

importance of generative model and prior beliefs agents 
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hold such that the world is selectively sampled to fit with 

the hypothesis in which priors play a role in generating 

prediction errors [17]. Priors always pair with habitual 

motor actions, while generative model encodes entropy, 

which leads to the reduction of uncertainty (i.e., 

exploration). When planning, the latter offers explanations 

to the data we perceive, while the former are the beliefs 

that contextualises our sampling of the world by assigning 

different weightings to the sequences of actions at the 

counterfactual level (for example, whether to turn on the 

light before going home, if the lighting system in your 

house is controlled by intelligent devices or turn on the 

light after are different action sequences. What active 

inference encodes is the beliefs about these sequences, not 

actions). In the context of cross-cultural effect, we can 

unpack this phenomenon as people who are equipped with 

different priors select different policies (i.e., several 

possible behavioural trajectories) to minimise prediction 

errors. An example for this is Hedden et al.’s work, in 

which the authors found a dissociation between the 

habitual behaviour (when doing culturally favoured task) 

and uncertainty resolving process (when doing culturally 

unfavored task), but overall equal accuracy and timing. 

The crucial funding is the equal time the two groups used 

to make judgements. This means, no matter how biased 

people are, when they are required to do an unbiased 

decision-making task, the energy that is used is equal. 

From the active inference perspective, the minimum 

expected free energy legitimates the goodness of a policy 

which balances the exploitation and exploration well. 

Once these balances are achieved, a motor action will be 

elicited.  

Besides, the planning of actions has a particular relation 

with attention, in the sense of ‘salience’ which could be 

deemed as a property of locations that the highly likely 

next saccade would target. The evaluation of salience is a 

process of computing the possibility of different policies 

in the exploration process. For example, each of the four 

quadrants of the squared pictures has different information 

gain that helps to resolve uncertainty [18]. The most 

salience position is the place that offers the maximal 

information which could increase the confidence of agents’ 

beliefs about the world [17]. The basal ganglia are thought 

as a perfect candidate to compute the salience since the 

dopamine signal is now considered as encoding the 

imprecision of prior beliefs about policies [19]. It is argued 

that the prior belief is computed by the direct pathway 

between the striatum and Globus pallidus internus, while 

the information gain is evaluated by the indirect, slowly 

evolving pathways. This seemingly redundant pathways 

may plausible since they meet the requirement of timing of 

messages in each pathway [20]. This suits well with the 

findings of equal time both groups used.  The direct 

pathway has a short latency and could disinhibit a set of 

policies quickly, while the indirect pathway receives 

signals from wide range of higher-level cortical areas so 

that it takes long time to play out its signals. The latter may 

also account for the relatively long reaction time when 

participants are required to make the judgement under the 

culturally non-favoured condition since our brain need to 

integrate the information into the decision-making process. 

This evidence accumulation could be reflected by 

increased activity in dorsolateral prefrontal cortex, and 

signals from this brain area reveals the weighting of 

posterior beliefs over prior expectations [21]. 

Armed with these works, the current paper aims to 

explain the attention mechanism in respect of active 

inference theorem and then unify all the results with one 

possible computational model. This paper comprises three 

sections. In the first, we will focus on two studies that 

reflect the neural correlates that underlie this cognition 

problem. In the second, we will introduce the essence of 

active inference and a recently developed model, namely 

the Markov decision process. Thirdly, we will reiterate the 

Lewis et al. and Hedden et al. experiments in the spirit of 

this model. We propose that human make decisions 

according to prediction errors that are transported between 

levels of the hierarchical generative model. Attention 

governs precision of prediction errors so that only those 

precise prediction errors that are weighted by the second-

order attention mechanism can be gained to help revise the 

higher beliefs. Attention could be shaped by culture, 

resulting in that people with different groups are sensitive 

to different types of stimuli. However, attention can also 

be shifted towards the most salient position to resolve 

uncertainty about hidden cause created by context [22]. 

The process of human’s actively sampling the world and 

keep themselves within limited states can be explained by 

the active inference theorem. Behaviour experiments can 

capture the cultural effect either by manipulating the 

context which participants usually immerse themselves in, 

or by showing them cultural preferred and cultural non-

preferred stimuli. But overall, these cultural effects are a 

violation of their causal models that shaped by social 

demands.  

II. ENDOGENOUS COMPONENTS OF CROSS-CULTURE 

EFFECT 

Lewis and his colleagues looked into the neural 

correlates that reflect this cognitive difference using a 

three stimuli P3a event-related potential design [13]. In 

this type of oddball experiments, the target (oddball) will 

elicit a reliable positive event-related potential peak 

around 300-400ms after the onset of the target (oddball) 

stimuli since the ERP technique offers time-lock neural 

activity recordings. The well-documented P300 signal is 

thought to be positively correlated with stimulus 

probability, task demand and attention allocation in 

processing this less likely appear yet meaningful oddball 

[23]. In this paper, Lewis et al examined two types of P300 

components. The P3a is sensitive to deviations from the 

temporal stimulus covariance created by the combination 

of standard and target stimuli, whereas the P3b is a late 

positive distribution and is thought to signal a context-

updating operation [24]. The idea is if East Asians indeed 

are more sensitive to context and perceptual field, then 

there would be a significant P3a difference between two 

groups. On the other hand, if European Americans attend 

more to focal object, then they should display a relatively 

larger P3b amplitude. The data proved this hypothesis and 
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their further mediation analysis showed that the 

relationship between culture and P3a is mediated by 

interdependent self-construal. 

Hedden used functional magnetic resonance imaging 

technique to locate the place in the brain where these 

cultural experiences influence judgements [12]. The study 

was based on the found that the harder the task is, the more 

attentional effort will be put [25]. Participants from two 

different cultures are put into fMRI scanner and are asked 

to make judgements regarding the line lengths. They 

observed a series of stimuli containing a vertical line inside 

a box. The task is to judge the stimuli with or without 

considering the box. Specifically, in the relative 

instruction part of the task, participants are required to 

judge whether the proportional scaling of the combination 

of the box and the line is same with the previous 

combination. In absolute instruction parts participants 

judge whether the length of the current line matches the 

previous one regardless of the box size. In each trial of the 

block, either the two instructions lead to the same 

conclusion —policy congruent condition, or the two 

instructions lead to the opposite conclusion — the 

incongruent condition. The relative judgement is East 

Asian-culture-preferred since they care more about the 

context, environment, and relationships, while the absolute 

condition is the Western European culture-favored due to 

their habits of focusing more on individuals. Participants 

also finished an independent questionnaire which reflects 

traits of self-identify. The authors found in the congruent 

trials, participants are faster and more accurate, and no 

differences are found in culture incongruent trails (i.e., 

both groups perform similarly). Whereas in the 

incongruent condition, brain imaging showed that both 

group members recruited extra cognitive effort when 

processing cultural non-preferred tasks and the brain areas 

that are correlated with attention control and working 

memory are more involved. The culture-identity 

questionnaire with higher scores for culture-preferred 

traits correlate significantly with less activation of ROIs in 

culture-preferred trails. 

III. ACTIVE INFERENCE AND MARKOV DECISION 

PROCESS 

The Hedden et al study pointed out attention plays a 

crucial role in shaping cognitive differences, whereas 

Lewis et al argued people with different cultural identity 

tend to perceive different types of information, the 

violation of expectations to this type of information 

induces P300 component — an indicator of surprisal. The 

latency of the P300 component indicates the level of 

accuracy the participant evaluated the stimuli [24], and 

cultural background exerts its influence on the neural 

processing of context through the mediator of self-

construal [13]. These findings imply a prediction model 

people use to represent the world and some segments of 

the model are assigned heightened availability.  However, 

these descriptions of attention on the nature of P300 

component are not precise.  We are expecting a model to 

code attention, besides, we also need to illustrate how the 

prediction error produced by this predictive model attracts 

attention. The answer to this question points to Active 

Inference theorem since it offers a mathematical approach 

to explain the importance of how the uncertainty is 

resolved and how the resolution of uncertainty results in 

attention. Briefly speaking, Bayesian surprise attracts 

attention, and this information is the epistemic value of an 

expected free energy formulation in the active inference 

theorem. What we are going to explain below is a highly 

simplified version based on Friston’s works [26], [27]. 

Adaptive agents like humans act to limit the repertoire 

of physiological and perceptual states in which they can 

find themselves [28]. The limited repertoire signals some 

attractors that lead living creatures towards their expected 

states. Homoeostasis is a perfect example. When core body 

temperature deviates from the typical temperature range, 

agents would reason the possible causes and then act 

accordingly to keep body temperature within homeostatic 

ranges. The ability to fit subjectively implies that the 

agent’s internal states hold Bayesian beliefs that encode 

and predict the external causes of sensory information, so 

that the internal active states reasoning in a way as if the 

agent ascent on the marginal recognition density over the 

external states. In other words, to survive, agents need to 

be able to minimise the divergence between the hypothesis 

that is currently selected and the true posterior beliefs 

under the generative model which is fine-tuned over 

ontogeny [29]. This discrepancy plus surprisal is 

variational free energy. Briefly speaking, variational free 

energy is predictive error in nature. Adaptiveness solicits 

familiar, unsurprising sensations from the environment, 

this means agents realise themselves by minimising 

surprise, namely the negative logarithm of Bayesian model 

evidence −lnP(Õ|m), where O denotes observations and 

m denotes ‘generative model’. Variational free energy is 

an upper bound of log model-evidence. Since model 

evidence is nearly impossible to compute, naturally, 

variational free energy measures the approximation of how 

much evidence provided by the data in terms of the 

generative model (i.e., the ‘m’) of the causal process. The 

states define the observations, because states mirror the 

causal relationship between the real world and its 

corresponding mental representations in the brain, and 

inference (or planning) is an inversion of generative model. 

Reasoning back from observation to causal states leads to 

the asymmetry between causation and observation, so that 

when making decisions (action), to avoid surprise, agents 

weigh different policies and chose the most possible states 

(one possible causal state) that maximise expectations with 

respect to free energy, and actively sample (sensation) 

observations associated with the minimised free energy. In 

brief, reducing prediction error (variational free energy) 

drives perception [30], action [31], attention [32] and 

motivational value processing [33] mainly because it 

equips the brain with the function of inferring the causality. 

In this way, living creatures adapt the fast-changing 

environment. 

The problem is organisms have only sensation data. 

Active inference thus suggests planning as inference under 

the energy principle [17], [34], [35]. To find the most 

approximate posterior belief, generative models like 
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predictive coding or Bayesian decision theory with 

Markov decision processes are good candidates to equip 

agents. Active inference takes the latter to account for the 

creature’s belief updating and behaviour as the inversion 

of a generative model. In this way, the action-sensation 

loop is linked by expectations, that is, the expectations 

depend on observations and actions depend upon 

expectations. This loop shows how agents’  internal 

predictive models communicate with the real world. In 

other words, agents interact with the world and make 

decisions of actions as a function of their newly updated 

expectations. The expectations are updated according to 

the sensory data agents sampled and are used to refine their 

beliefs about the states of the generative process, namely 

the world. We can understand active inference as gathering 

sensory evidence for an agent’s model of its world, and by 

doing so, the agent realises the so-called self-evidencing. 

This is a rather subtle statement lies at the heart of active 

inference that agents adjust their expectations to minimise 

free energy and they can only realise these requirements 

when they believe the observations they actively sampled 

can lead to the minimisation of free energy. For example, 

I believe I need to keep my body temperature in cold 

winter, so I would either actively wrap up, or stay indoors 

because I believe these policies will make sure I will not 

get cold. This is where the expected free energy plays a 

role. The expected free energy is the difference between 

the energy of the counterfactual outcomes and states that 

generates these outcomes expected under the posterior 

distribution Q (𝑂𝜏,𝑆𝜏|𝜋) and the entropy of the posterior 

predictive distribution over hidden states [36]. 𝑄 (𝑆,̃ 𝜋)is 

a counterfactual posterior distribution over hidden states 

𝑆𝜏 under current beliefs, while current beliefs (the priors) 

about hidden states depend on past observations. The prior 

beliefs will be the pragmatic (or, extrinsic) value which 

guide agents towards the goal no matter what policy they 

choose. When planning or reasoning, to minimise the 

expected free energy in the future, agents need to choose 

the policy that could offer more information about ‘what 

the observation I would get’ and ‘at what state I would be 

in’. Put simply, agents are in search of a policy that would 

lead to the maximal mutual information, Bayesian surprise, 

or information gain. We can also understand this as agents 

are purposefully navigating themselves to the outcomes 

that can maximally update their current beliefs towards the 

expected states. The expected free energy over the ideal 

policy will then be written as the summation of the 

pragmatic value offered by prior belief, the epistemic value 

which tells the reduction of uncertainty of future states 

offered by possible outcomes and information gain for 

parameters (i.e., novelty). It is a policy where the power of 

epistemic value is contextualised by the pragmatic value. 

This is key to understand the cross-cultural difference 

since the execution of the culture favoured decision is 

influenced by the resolution of uncertainty reduction, and 

the extent to which the agent would explore the 

environment  depends on a precision parameter 𝛾.  

The cultural effect is related to attention (i.e., expected 

precision parameter), a variance that reflects how 

confident (precise) a model’s prediction is. It is the second-

order, non-linear inference process which modulates the 

first-order linear driving connections [37]. Before moving 

to discuss how this parameter works, it is necessary to 

formulate the graphic model (MDP) in Fig. 1. to illustrate 

their relationships. In this model, variables are defined as 

Table I. 

 
Figure 1.  Parameters that are involved in policy optimization. 
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TABLE I.  GLOSSARY OF EXPRESSIONS FOR THE GENERATIVE MODEL 

Oτ Outcomes or observations at time τ 

Sτ Hidden states at time τ. Often serves as context or choices. For example, in Ponsner paradigm, there are two contexts, 

namely ‘looking at right and looking at left’. In figure-background experiments, background is also a ‘context’. 

Q An approximate posterior over hidden and control states 

π A vector encoding the distribution over action policies reflecting the predicted value of each policy. Each policy I a 
series of allowable actions in a vector U, where actions correspond to different state transitions that can be chosen for 

each state factor. 

A matrix 

P (Oτ | Sτ) 

A matrix encoding likelihood of the relationship between hidden states and outcomes. It solves questions like which 

outcomes are most likely when there are multiple hidden states. 

B matrix 

P (Sτ+1 | Sτ, π） 

A matrix encoding beliefs about how hidden states will evolve over time 

C matrix A matrix encoding the degree to which the observed outcomes are preferred over others. Technically, it is modelled as 

prior expectations over outcomes. For example, when walking in foggy forest, observations from auditory channel 

may be improved or outweighed than visual observations. 

D vector A vector encoding beliefs about initial hidden states. 

E vector 
P (π) 

A prior probability distribution over policies, implemented as a vector assigning one value to each policy. Always 
regarded as habit. 

The squares on this map are parameters that map the 

most possible hidden states to the observed outcomes. 

Basically, this picture is a road map that can be used to 

infer the quantities of the hidden states and the relationship 

between hidden states and outcomes by adjusting different 

‘square parameter’. The ‘D-S1-A-O1’ pathway shows the 

basic perception at a single point time, and when policy π 

is added in, the model generates a temporal time depth. 

Different cognitive activities can be measured in this time-

windows, and we mainly are interested in the attention 

effect from 100 ms up to 300 ms after the onset of stimuli. 

The ‘D-S1-A-O1’ pathways means the hidden state 

(posterior expectations) S1 can be inferred from sensory 

evidence O1 based on the prior beliefs D and a likelihood 

matrix A. The S1 can be thought as the best explanation of 

the observations. The transition from S1 to S2 relies on the 

B matrix layer. It describes beliefs about how state evolves 

over time, independent of the true future observations. 

Crucially, B matrix and states of previous time point (i.e., 

τ-1) function as a temporal empirical prior. A series of B 

matrix form different policies π, each of which holds 

different predictions for the future. This is the core of 

active inference, namely, the policy selection (i.e., 

planning). Note that, the posterior belief about a policy 

depends only on the current internal state, that is, internal 

states can only infer action through its sensory sequelae. 

This creates a distinction between action and beliefs about 

its consequences encoded by internal states [36]. Due to 

this difficulty of licensing correct action but only beliefs 

about action consequences encoded by internal states, 

active inference reverses the usual logic of action selection 

into asking “given the assumption that I achieve my 

preferred outcomes, what course of action am I most likely 

to pursue”. This means agents need to hold mental 

representations of outcomes under different policy series, 

and the dynamics of hidden states over time endow agents 

with working memory which enables evidence 

accumulation. The evolution of minimisation of prediction 

error may lead to the emergence of the best predictors in 

the higher level. This finessed regularity resists to change 

since it is good enough to predict the outcomes in a longer 

time scale. A good example is processing a sentence. The 

lower level infers single word, and higher level infers 

categories and the combination of categories of words, 

while the highest level infers the sequence of the 

combination of different categories. We can also take 

clock as an analogy; a ticking of the minute hand 

corresponds to the lower level. At the end of each circle, 

the hour hand, which corresponds to the higher level, ticks 

once [38]. In active inference, this is where the pragmatic 

value is computed [39], [40]. The γ is an indicator of the 

sensitivity about how precise the prior beliefs about 

policies are. The advance of adopting the MDP model is 

its hierarchical nature enables us to see how the higher-

level parameters influence the deep temporal structures. 

The MDP model can be expended in a nested fashion such 

that the beliefs about the policy and the first hidden state 

only depends on the hidden state one level above. That is, 

the policy, together with its mother and child hidden state 

node, form a statistical shield that contains all the 

information that is required to generate certain 

observations. What we show in the graph is a basic one-

level unit of MDP model. We can take it as a whole, and 

add another state layer upper the π node, such that the 

chosen of  this policy depends on whether its mother 

node is activated. Further, we can imagine that there are 

several mother nodes in parallel, each of which generate 

different outcomes. The active inference suggests that 

agents can actively sampling the world by activating 

different state nodes. This possibly is how γ parameter 

mediates the higher states with the lower levels where the 

explorative process unfolds. Also, this is where culture 

exerts its influence on different ways of navigating the 

world. 
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IV. ATTENTION MECHANISM 

Attention is established by measuring the precision of 

probabilistic representations in hierarchical inference 

about the cause of sensations. Prediction errors that diverse 

in precision level compete to be explained away, leading 

to this precision-weighting mechanism [41]. Superficial 

pyramidal cells are proposed to be crucial in reporting 

precision-weighted prediction error which has more 

influence at higher levels [42]. Attention hence is thought 

to modulate excitability of neuronal populations that 

generate prediction error and attenuates less reliable 

prediction error. For example, acetylcholine is supposed to 

exert its influence on low-level bottom-up auditory 

processing through boosting postsynaptic gain when 

stimuli are predictable, resulting in accelerating brain’s 

response to the reliable prediction error [43]. The mirror 

neuron system is proposed engages in inferring causes of 

action by observing and minimising the prediction error at 

all cortical hierarchical levels that are involved in motion-

observation. But the precision of this kind of prediction 

error should be weakened when agents elicit their own 

actions [44]. A failure of attenuation leads to illusions, 

which means, physically, agents failed to infer whether the 

actions are done by themselves or others [19]. Reporting 

precise prediction error is vital in making optimal 

inference and balancing internal modal with sensory data 

at hand [45], [46]. Attention’s nature of ascending 

prediction error and influencing higher level hidden states 

can be thought as state-dependent. Agents learn state-

dependent patterns of noise, and when sampling, this 

learned patterns are served as prior beliefs to guide 

perception and action. A change in states of the 

environment will lead to a change of information-to-noise 

ratio and change the location where attention will be set. 

This does not mean attention is always a conscious process 

[39]. Indeed, sensory data are highly biased both by 

bottom-up and top-down predictions, and attention can be 

unaware. A well-studied top-down spatial attention bias, 

which is also inspiring in understanding automatic culture 

attentional effect is the Ponsner paradigm. Under this 

experimental setting, participants are asked to maintain 

fixation on a central fixation and respond as quickly as 

possible to the appearance of a peripheral target. The target 

is cued either by a central arrow which indicates the 

direction of the upcoming target 80% of time accurately, 

or a square that shows up around the location the target 

will show. The valid cue speeded the detection time 

significantly and researchers argued this is due to 

endogenous attention facilities the prior knowledge, or the 

hidden state that generates the observations that are 

currently processed. Feldman and Friston modelled this 

task with a 2-level hierarchical model [32]. They 

demonstrated that the peripheral box, serving as 

exogenous (overt) cue, attracts attention by augmenting 

local precision (the right place), so that the spot where the 

peripheral cue existed gains a boosted precision, which 

excites the corresponding hidden state. The appearance of 

the arrow cue solicits a high-precision prediction error, 

which excites the hidden cause of the higher level that 

drives the hidden states towards biased location. This bias 

effect lasts for a while, waiting for a forthcoming target. If 

the target is the expected one, then a high-precision 

prediction error will be generated, and stabilises the hidden 

cause at the second level, which will activate its 

corresponding hidden state at the first level, results in a 

perception of a target. If the target is not what is expected, 

the bias effect will disappear, thus non-activate hidden 

state fails to generate an invalid target. Note, the hidden 

state, biased by the hidden cause serves as a temporal prior, 

and the target is the expected surprise. In short, attention 

mechanism offers unambiguous perception information 

that should be boosted when encountered and should be 

sought when absent. It enhances reliable prediction errors 

as well as attenuates irrelevant prediction errors. The 

attenuating function is related to figure-ground recognition 

process [37], which we can use to explain the figure-

ground segregation in cross-culture difference. 

The process discussed above is overt attention, meaning 

the result of attention has been successfully executed, for 

example, an eye movement. Apart from this automatic 

overt attention, there is another aspect of attention, namely, 

the covert attention which is proposed by Posner et al that 

attention can be reoriented to the non-attended but 

stimulated space without firstly detecting the signal. This 

attention is argued as a bottom-up bias [47]. Abrupt-onset 

stimuli, which pops out from the background as outliers, 

and thus attracts human attention naturally, even task 

irrelevant [48], [49]. This type of stimuli offers 

information in Shannon information fashion because 

Shannon entropy requires integration of information 

offered by new outcomes over the space of  ‘new 

outcome’  of all possible outcomes. Even sometimes, 

stimuli capture an approximation of surprise, it is flawed 

sometimes, hence not the best candidate accounts for 

attention. He also suggested that the programming period 

of attention is separated from the detection period 

anatomically. The latter is embedded in the oculomotor 

networks and responds habitually to the certain type of 

signal. Once the stimuli deviate from the habitual type, 

extra effort is needed to detect the stimuli. Some studies 

imply the overlap of neural networks between attention 

and oculomotor control can be modulated by dopamine 

[40], [50], [51], since the disruption of the dopaminergic 

projection to striatum disrupts normal eye movements [52]. 

More precisely, the behaviour of phasic dopamine signals 

reflects the confidence in posterior beliefs about policies 

[53], [54], and this is the γ parameter introduced in the 

active inference, which is used to plan the next move. Both 

overt and covert attention offers information gain agents 

are searching for. Different from information the bottom-

up bias offers, Bayesian surprise requires integration over 

the model space of the observer and attracts attention in a 

top-down fashion. Stimuli of this type do not contain 

information gain themselves but are able to direct attention 

to the spot that contains information gain [55]. In the 

language of active inference, this Bayesian surprise is the 

‘epistemic value’and the level of its salience depends on 

agents’ beliefs about to what extend the sampled data 

would update the prior belief thus navigate agents towards 

the true posterior beliefs.  
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A common way to test attention level is recording 

saccadic eye-movements. Friston et al. proposed that 

saccadic eye-movements are agents’ experiments [56], 

which are used to change outcomes in hopes of gathering 

information that explain the perceptual hypotheses best. 

Statistically, attention can be deemed as an analogy to the 

‘DO’ operator proposed by Pearl [57]. This operator 

activates certain parts of information networks and blocks 

others, resulting in a formation of causal Bayesian chain 

[58], and the best explanation of the hidden states. That is, 

the ‘salience’ value guides the sampling towards the 

unambiguous goal that have not been predicted yet but 

with a high degree of certainty. Agents’ motivation is 

solving the uncertainty. As can be seen from the graph 

above that the policy is a functional of variational free 

energy and precision-weighted expected free energy. It can 

be written as:  

 𝜋 = 𝜎(𝑙𝑛 𝐸 − 𝐹 − 𝛾 ∙ 𝐺) (1) 

With a closer look, this equation means agents need to 

integrate information of both A matrix and B matrix, and 

the generative model is dynamic and hierarchical. That is, 

under each possible policy there are many B matrices that 

denote transitions of hidden states, and different likelihood 

encodes in A matrices. Different combination will 

generate different outcomes, so that the precision is 

paramount in selecting which pathway agents will select, 

and which will be inhibited. It is worthy of giving an 

intuitive example of how the precision of a one-

dimensional A matrix and B matrix would influence 

inference. Normally we rely on binding sensory 

information of different modalities—vision, hearing, 

smelling, touching and tasting to make decisions. However, 

when in foggy forest, a good hunter may need to sharpen 

his sensitivity to hearing and smelling signals and rely less 

on other sensory information. In this situation, the 

precision of olfactory and audile prediction errors are 

boosted, resulting in a quick response to signals coming 

from these two sensory channels. If now an olfactory 

signal reports the possibility of a tiger (the likelihood of A 

matrix is high) which rarely inhabit this forest (the belief 

about the precision of A matrix is low), besides, the density 

of the smell directs the possible location the attention 

should be directed to (density is a variable of B matrix the 

change of which represents volatility, a greater volatility 

shows a less precision of B matrix, in contrast, a lower 

volatility means the precision of B matrix is high). The 

more volatile the B matrix changes, the faster the 

representations of the feature s (e.g., density) are forgotten, 

the less easy the inference can be made. The combination 

of A matrix and B matrix can generate a belief about the 

state — ‘how far a tiger is from me’. Once a belief is made, 

a policy is chosen, this temporal working memory can 

serve as a context restrains and combine with incoming 

information which is highly related with the refined past 

stimuli to predict future information (i.e., whether there is 

a tiger around or not). In saccadic eye-movements 

experiment, such as Mirza et al. [59], the 𝛾  value 

measures the overall confidence level of a policy. As for 

the subsets of gamma parameter, they can hold different 

precisions. For example, the precision of A matrix ζ and B 

matrix 𝜔 (for a visual structure of the distribution of 𝛾 

which modulates π, and ζ which modulates matrix A) [60]. 

In a simulation of reading task, Parr and Friston simulated 

the effects of dopamine modulation on salience using a 

hierarchical reading task in which a high precision of 𝛾 

correctly predicted the upcoming word with the minimum 

eye-movements, whereas the lowest precision of 𝛾 led to 

a random saccade which means a failure in prediction 

upcoming information [40].  

As has been implied above, the saccadic experiments 

are in search of data that bring about an update of belief to 

the maximal level, however, they have great uncertainty 

about the data but only high confidence (precision of 

expected free energy) in the cause of how the data are 

generated. Meanwhile, maintaining a representation when 

distractors are around requires agents holding the 

execution and believing the incoming data is noisy and 

useless in updating beliefs. This dilemma offers a chance 

of biasing the belief updating towards either the current 

beliefs or the current incoming data from the lower level 

of sensorium. When it is used in the former way, the 

posterior beliefs are kept close to the prior belief. This is 

where the cultural effect influences perception. Given the 

hierarchical nature of the generative model, when the 

epistemic value is computed, the higher-level precision 

modulation determines which expectation would be 

encoded in the hierarchy [61], and this expectation is 

shared expectations that formed through shared cultural 

practices (see Fig. 2 for a summary). The communication 

between local environments and the associated practices 

leads to particular patterns of coordinated attention from 

participants [62], [63]. These patterns have dynamical 

attractors that guide action-perception loop towards certain 

states and outcomes rather than others, and these attractors 

are hierarchically deployed since they are induced by 

sequence of states which are hierarchically nested. This 

means that it is possible to generate sequences of 

sequences. Agents that are equipped with the same 

generative model synchronised indeed to the same 

attractors when they are engaged in the communicative 

setting [64]. This may be how the cross-cultural effect 

evolved. 

V. AN EXPLANATION FOR THE PREVIOUS 

EXPERIMENTS 

In this part, we aim to reexplain the two neural studies 

by using the active inference framework introduced above. 

Before doing so, it is helpful to look back on the studies 

we discussed at the beginning. Hedden assessed the fMRI 

responses when participants were doing both absolute 

(ignoring the visual context) and relative (considering the 

visual context) judgements under different conditions 

(congruent and incongruent) [12]. Participants were either 

from Western cultural context or East Asian community. 

This probably is the first neural study of the cross-cultural 

phenomenon, the results of which denied the existence of 

significant behavioural effects. The authors found no 

behavioural culture effect for accuracy or reaction times, 

albeit faster reaction time and more accurate judgements 
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in congruent trails in comparison to the incongruent trials. 

However, they did find the above-threshold activities at the 

neural level in higher-order cortices (frontal, parietal, 

temporal) that are involved in cognitive control, attention 

and working memory when participants were doing 

culturally non-preferred judgements, they hence 

concluded the cross-cultural effect is involved in the 

simplest activities by endorsing attention. These findings 

could be explained in two aspects: the first is how attention 

mechanism selectively responds to culture favoured 

stimuli; and how participants actively resolve the 

uncertainty while holding the execution to the culturally 

favoured stimuli. 

 

Figure 2.  A simple cortical hierarchical model with ascending prediction errors and descending predictions. 

Neurobiologically, the precision weighting (attention) is 

a parameter that does not change with time and is highly 

experience-dependent. This means, the updating of γ 

resembles associations between short and long term 

changes in synaptic connections [64]. It is an emergent 

phenomenon and signals that the generative model 

contains prior beliefs, and the log-precision of these prior 

beliefs is redistributed in context sensitive fashion. Given 

the state-dependent nature of posterior beliefs, we could 

thus state that different priors select different types of 

sensory information. That is, agents tend to actively 

sample certain types of outcomes with respect to their prior 

expectations shaped by different culture niches and visit 

the most familiar sensory states again and again [65]. The 

prior, or hidden cause generates expected information gain 

(i.e., Bayesian Surprise), such that only the targets that can 

induce high-precision prediction errors that could be 

perceived. 

In behavioural experiments investigating the cultural 

effect, with the absence of cues, the precision information 

is encoded in the probabilistic contexts (or states) 

generated from the task requirements, in which two causes 

are expressed. The judgment task carried out by Hedden et 

al introduced two sets of hidden states, namely Rule and 

Categories. A scene can be perceived in two ways, 

according to rules, either by focusing on the object or the 

combination of the objects and the peripheral box. The two 

categories correspond to objects (i.e., Sline) and the 

combination of the objects and the peripheral boxes (i.e., 

Sline+box). These two outcome modalities generate 4 

outcome possibilities in total that deviate from participants’ 

normal expectations. The first outcome modality Rule 

unambiguously cues the context. This process is exactly as 

same as how the endogenous and exogenous cues excite 

the hidden causes in Posner Paradigm and then hidden 

causes drive two hidden states bias the precision towards 

the most favourite (valid) information. These causes are 

shaped by encoding the affordance of culture niche in real 

social life into tonic dopamine firing levels [56], [66], 

since consistent results of certain actions in certain culture 

communities furnish reliable prediction errors, and this 

attracts the actions towards the most revisited repertoire of 

hidden states. Put in other words, the hidden cause shows 

a long-term persistence that shortens the reaction time and 

requires extra evidence accumulation to be reversed. The 

active sampling action reports participants’ beliefs about 

the category of the scene categorised under the precision 

of the Rule. Further, Rule category exists at the higher 

level of the hierarchy of the MDP model since it governs 

how other modalities generate outcomes and the real 

perception result is a function of  

Rule hidden states (e.g., sampling the length of the line 

when the rule is Focus Object will get a right feedback). 

Modulating the precision of rules leads to a change in 

perception outcomes. Mirza et al simulated a colour/shape 

task in which both colour and shape features can be used 

to sample a scene [59]. When increasing the precision of 

one rule to the maximal level (i.e., the colour rule) while 

decreasing that of the other to zero (i.e.,the shape rule), 

participants selectively percept the outcomes generated by 

the high-precision rule (i.e.,colour) and neglect the shape 

outcomes totally. However, when the precision of both 
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rules is increased, participants attend two targets generated 

by the two hidden causes without neglecting any targets. 

Similarly, we can assume that simply by changing 𝛾 

values, the behaviour differences could be captured. For 

westerners, 𝛾  value for Rline may relatively higher than 

that of Rline+box, which means participants have a high 

posterior confidence over current policy, namely focusing 

on object information. For Asians, the other Rline+box has 

higher 𝛾 value that drives them in search of information 

from the combination of object with others. This analysis 

may indicate the substantial cognitive differences across 

cultures is objective and significant behavioral differences 

could be observed. However, it is important to notice that 

the behavioral indices of cultural effect for accuracy and 

reaction time are similar across Westerners and East 

Asians, besides, participants were faster and more accurate 

in congruent trials in comparison to the incongruent trials. 

That is, when the cultural expectations are violated, the 

reflexive did not slow down the reaction time albeit some 

costs of accuracy were paid. This may because the extra 

attentional load is recruited to reduce prediction errors. In 

the incongruent condition, participants were required to 

make judgements to the stimuli they did not habitually 

attend to. So, participants need to retain habitual responses 

to the cultural favoured stimuli while planning movements 

by reducing the epistemic value. The appearance of the 

stimuli in the non-expected direction induces a shift of 

attention and rearrangement of the ocular motor program, 

leading to redirect fovea to the place the attention beam 

light is shifted to [67]. This change could interfere with the 

habitual system, thus slow down the reaction time. As what 

has been implied above, the neural networks of attention 

and salience are different anatomically. The salience is 

thought to be mapped in the superior colliculus and relies 

on motor control which interacts with attention system and 

elicits actions according to the affordance the salience has 

offered [68], [69]. It is possible that the messages from 

cortex (attention) to colliculus (salience) are prediction 

errors [40]. Given both groups were undergoing the same 

process, that is to minimise the expected free energy, this 

may result in overall the same reaction time yet increased 

errors (since retaining the response is hard according to 

Ponsner et al.) [47]. 

The same analysis could account for the three-stimulus 

oddball task carried out by Lewis et al. To recap briefly, 

the authors investigated neural responses to targets and 

novel stimuli by using a 3-stimulus novelty P3 event 

related potential design. Participants were required to 

respond to the targets ‘6’ while being distracted by novelty 

stimuli whose possibility is the same as that of the targets. 

No main cultural effect was found in this experiment. 

However, culture significantly interacted with the 

condition, and condition interacted with Electrode. The 

relationship between culture and Electrodes is mediated by 

self-construal. That is, westerners attend to targets more 

easily while Asians tend to pay more attention to 

contextual information. Different from the Hedden et al’ 

paper, in which participants need to respond to both the 

typical and atypical stimuli, participants in oddball task 

were required to respond only to the target number. For 

Westerners, this type of target easily activates the hidden 

state of Starget which generates the objects, leading to their 

accurate responses to the targets. Whilst the precision of 

hidden state Starget is lower than Starget+deviate, resulting in a 

consistent attention to the relationship between the current 

and upcoming stimuli to minimise the expected fee energy. 

The different amplitudes of P300 component are a piece of 

evidence. 

According to Donchin and Coles [24], agents are 

waiting for certain types of information that are expected 

according to the current context created by the task. We 

now know this information is the type of targets that is able 

to induce high-precision prediction errors. The P300 

component is a sign of the appearance of this type of 

stimuli. It is a sign of Bayesian surprise, the epistemic 

value that is expected to gain, but the certainty about the 

data is low. It manifests the changes in the environment 

that help to update the current context to adjust the changes. 

Not all odds in the environment induce this event-related 

potential. Only the segments of the context that are 

meaningful to the tasks are likely to induce the revision of 

the generative model [70]. To test how responses to the 

invalid targets change when jointly put together with 

attended targets, Feldman and Friston presented valid 

(stimuli that are easily captivated by attention around 100 

ms after the onset of stimuli) and invalid targets in 

conjunction and found that the response to the invalid 

targets is half of that of valid ones [32].  

The valid targets will lead to the increased N1 amplitude 

due to their ability to win the attention resources by 

attenuating the invalid targets, but a reduced P3 amplitude, 

since no prediction error needs to be explained away. On 

the contrary, the invalid targets generate decreased N1 and 

increased P3, meaning the prediction error needs to be 

reduced and the higher order context should be updated 

[71], [72]. This explains well the Lewis et al.’s results that 

the European Americans have a higher P3b amplitude 

singling their attention on changes of objective targets 

which are expected to update their posterior beliefs, while 

East Asian Americans’ greater novelty P3a component 

shows their generative models encodes high precision of 

relationship information and thus easily attend to targets 

that may bring changes to this relationship information. 

This has been proved by Wright et al. by using a 

Hierarchical Gaussian Filter [14]. East Asian’s higher 

probability learning rate shows a faster updating of beliefs 

about probabilistic relationships thus a high precision (or 

covariance) of context. Ji et al. also showed that Asians are 

more confident in differences in covariation and have a 

high road-field dependence [4]. 

VI. CONCLUSION 

Early research on cross-cultural effect focused on 

sensitivity to social cues and conditional context, and the 

cognitive studies mainly emphasised attention to the 

perceptual field. But these behavioural studies are not 

well-controlled, nor well replicated. The two neural 

experiments mentioned in the body part studied the neural 

correlates that underpin these cognitive differences and 

limited the cultural effect to the attention mechanism. We 
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tried to give a computational model to explain how 

attention affects the way people sampling the world. We 

argued that the hierarchical nature of human inference 

leads to nested network, the plasticity of connections 

between levels is modulated by the γ value, which is 

basically ‘attention’. However, there are two aspects of 

attention, namely gain control and salience, the former lies 

at the highest level, and is formed through coordinating 

with people living in the same community. This value 

resists to change and accommodates many cross-cultural 

phenomena. The latter can be found in low level task 

relevant inference processes, such that people can change 

their expectations according to changes in the environment. 

This is why no behaviour differences were found in neural 

experiments. The communication between these two 

aspects of attention forms the paths of minimising 

expected free energy. 

ABBREVIATIONS 

MDP: Markov decision process 

P300: A component of the event-related brain potential 

which is controlled by the subjective probability and task 

demanding. It signals agents’ model of the environment 

needs to be revised. In this article, the appearance of P300 

component means the context, which is encoded by hidden 

states of the observation, is being updated. 

P3a: The novelty-related component which proved 

particularly sensitive to deviations from the immediate 

stimulus context that is created by the standard and target 

stimuli in the three-stimulus variation of the oddball task. 

The more perceptually discrepant the stimulus is compared 

to the standard and target stimuli, the greater novelty P3a 

amplitude will be elicited. For example, car horn is 

perceptually salient than target stimuli which forms a 

temporal context. 

P3b: A late positive component which reflects the revision 

of the long-lasting probabilistic context encoded by 

inferred hidden states. 
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