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Abstract—This article illustrates a feature selection 

technique that makes use of artificial neural networks. The 

problem being faced is the analysis of microarray 

expression data, which requires a mandatory feature 

selection step due to the strong imbalance between number 

of features and size of the training set. The proposed 

technique has been assessed on relevant benchmark 

datasets. All datasets report gene expression levels taken 

from female subjects suffering from breast cancer against 

normal subjects. Experimental results, with average 

accuracy of about 84% and very good balance between 

specificity and sensitivity, point to the validity of the 

approach.  

 

Index Terms—feature selection, artificial neural network, 

microarray data, cancer prediction 

 

I. INTRODUCTION 

Cancer prediction is a main research topic in 

biomedicine, and microarrays are still the preferred tool 

for gathering relevant gene expression data. Due to their 

robustness and effectiveness, artificial neural networks 

have been extensively used to generate models able to 

deal with this kind of problems. To deepen this research 

topic the reader can consult, for example, the review 

work of Daoud and Mayo [1]. In this survey, the authors 

summarize the research topic into i) filtering methods, 

aimed at extracting representations that best describe the 

gene expressions, ii) predicting methods, aimed at 

maximizing the adopted performance measures (typically 

accuracy), and iii) clustering methods, aimed at dividing 

the genes or samples according to their similarities. 
Typically, the analysis of data derived from 

microarrays turns out to be very difficult, as any 

reference dataset can always be thought of as a list of 

gene expression values. In fact, with M number of 

examples and N number of features, when M << N the 

so-called “curse of dimensionality” problem arises. In 

this case the negative impact due to the overwhelming 

number of features can be dealt with by performing 

feature reduction, feature selection, or both. However, in 

the field of microarray analysis feature selection is 

preferred, a relevant side-effect of the analysis being the 
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identification of one or more clusters of genes that are 

responsible for the phenotype. A number of techniques 

have been devised and proposed over time to perform 

feature selection on microarray data. In particular, a 

review article has been recently issued on feature 

selection for cancer prediction by Hambali et al. [2]. 

Here the authors points out that achieving good 

performance starting with the complete set of genes 

remains a great challenge, due to the high dimensions, 

small sample size, and presence of noise in gene 

expression data. Then the authors recall the most relevant 

feature selection techniques that have been devised to 

overcome this problem, pointing that feature selection 

methods are typically less critical and sensitive than fea- 

ture reduction ones. A comprehensive taxonomy of the 

various feature selection methods used for microarray 

cancer classification is also proposed and used as 

reference framework for discussing each specific method. 

Further surveys have also been issued on the same topic 

–see in particular Almugren and Alshamlan [3], and 

Gunavathi et al. [4]. As for the feature selection tools 

available off-the- shelf, the interested reader may also 

consult the work of Tadist et al. [5]. The perspective of 

the cited work is that feature selection techniques are 

believed to become a game changer that can help to 

reduce the complexity of genomic data, thus making it 

easier to analyse it and translating it into useful 

information. This work is also clearly influenced by the 

discussion on eXplainable AI [6], [7], which tipped the 

scales in favor of selecting features rather than 

transforming them into another space. Despite the 

growing amount of research that points to feature 

selection as the main tool for contrasting the curse of 

dimensionality, there is still room for devising ad hoc 

solutions, in particular for those research fields in which 

the order of magnitude of N/M is at least 10^2. This 

article illustrates a feature selection technique, based on 

multilayer perceptrons (MLPs, hereinafter), which is 

framed within the broad category of “wrappers” [8]. To 

prevent the occurrence of a selected feature set strongly 

biased by a specific run of the algorithm, a greedy 

selection strategy is enforced which repeatedly makes 

use of a number of independent run steps. In so doing, 

the possibility of disregarding relevant features is 

strongly reduced. Experiments have been performed on 
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five datasets (available on GEO) derived from 

experiments on microarrays related to patients with 

breast cancer. One dataset was used for training and 

validation, and the others for testing. Experimental 

results point out that the accuracy, averaged on all 

datasets used for testing, is about 84%. Moreover, a very 

good balance between specificity and sensitivity has 

been observed. Notably, although devised for the specific 

research topic described in this article, the proposed 

technique is general enough to be used also for other 

application fields affected by the curse of dimensionality 

problem. 

II. METHODS 

This section is aimed at illustrating the proposed 

feature selection algorithm, including the heuristics used 

for assessing feature importance. Before going into 

details, let us make some general consideration on the 

underlying framework. 
The specific problem to be faced regards a dataset 

consisting of about 400 examples, distributed on five 

datasets. Each dataset is characterized by more than 22k 

features (of course, each feature accounts for a specific 

gene expression measured on a microarray experiment). 

No doubt that for this problem the curse of 

dimensionality holds, making it difficult for every 

learning algorithm to come up with a useful 

generalisation. For this reason a suitable feature selection 

algorithm has been devised and implemented. 

A. Overview of the Proposed Feature Selection 

Algorithm 

The insight that drawn the definition of the proposed 

algorithm was to perform feature selection in several 

steps by progressively reducing the set of selected 

features. Starting with the full set of features, at each step 

a small fraction of features is dropped, while the others 

are passed on to the next step. The algorithm ends when 

the wanted number of features is reached. The 

corresponding function is shown in Listing 1. Note that 

the algorithm iterates over a pair of functions, i.e., 

make_steps and drop_features. The former is entrusted 

with evaluating feature importance across multiple steps 

of feature selection run in parallel, whereas the latter is 

entrusted with dropping a fixed percent of features 

(default 5%), using a consensus-based strategy. Fig. 1 

reports the dependencies between the main function and 

the subsidiary ones. The diamond icon used in the figure 

highlights that a “part-of” relation holds between the 

connected boxes –e.g., the connector that links make_FS 

and make_steps asserts that the former repeatedly calls 

the latter. 
 

def make_FS ( dset , max_feat=20 , numruns=50 , ** kwargs ) : 
     # Perform feature selection using a greedy strategy  
     selected = dset.features.copy ( ) # start with all features 
     while len ( selected ) > max feat : 
         rankings = makesteps ( dset , selected , num runs , ** kwargs ) 

         selected = drop features ( selected , rankings ) 
      return selected 
Listing 1: Algorithm for feature selection (simplified 

listing). The algorithm starts with the full set of features, 

whose number is then progressively decreased using a 

greedy strategy. The algorithm repeatedly calls the 

functions make steps and drop features. 

 

Figure 1. Function tree that highlights the role of each subsidiary 

function in the implementation of the proposed feature selection 

algorithm (here reported as make_FS). 

The function make_steps embeds an iteration as well. 

This iteration is required to make the selection as much 

independent as possible from the “history” of training, as 

well as from the way training and validation set have 

been randomly split. In other words, multiple steps of 

feature importance evaluation are run to make the 

dropping of non relevant features more sound from a 

statistical perspective. A simplified version of the 

corresponding Python function is reported in Listing 2. 

The listing makes clear that a number of completely 

independent feature selection steps are run in parallel.1 It 

is worth pointing out that each step gives rise to its 

specific ranking, so that all rankings are passed to the 

function drop features for further processing. 
 
def make_steps ( dset , features , num_runs=50 , ** kwargs ) : 
     #Perform multiple steps of feature selection ( default 50)  
     rankings = [ None for k in range ( num_runs ) ] 
     for k in range ( num runs ) : 
          rankings [k] = make_single_step ( dset , features , ** kwargs ) 
     return rankings 
 

Listing 2: Multiple steps of feature selection 

(simplified listing). Depending on the selected number of 

run steps (see the num runs parameter), a battery of 

feature selection steps is run. Each step gives rise to its 

specific ranking of features. All rankings are returned by 

the function for further processing. 
The function make_single_step (see Listing 3) is the 

core of the computation. In fact, make_FS repeatedly 

calls make steps, which in turn repeatedly calls make 

single step. Given a dataset and the currently selected set 

of features,first make_single_step randomly splits the 

dataset into training and validation set (of course, only 

the selected features are preserved), then an MLP model 

 
1.In fact, this part of the algorithm has been run in parallel using the 

Ipyparallel Python library. A porting of the code to pySpark is on the 

way. 
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is created, characterized by a single hidden layer 

equipped with N*5% hidden nodes (with N number of 

selected features). After fitting the model with the 

training set, features are finally ranked according to an ad 

hoc strategy, which is described in the next subsection. 
def make_single_step(dataset, features, **kwargs): 
     #Perform a single step of feature selection 
     train_set, valid_set = dataset.split(random=True) 
     train_set = train_set.project(on=features) 
     valid_set = valid_set.project(on=features) 
     model = make_MLP_model(features, **kwargs).fit(train_set) 
     return rank_features(model, valid_set) 
 

Listing 3: Single step of feature selection (simplified 

listing). First, the given dataset is randomly split into 

training and validation set. Then an MLP model is 

created upon the training set and assessed on the 

specified features only. Finally, feature ranking is 

performed by looking at the difference between the full-

fledged model and the performance observed after the 

removal of each specific feature. 

B. Assessing Feature Importance (on Single Step) 

To shed light on the adopted feature importance 

measure, let us consider the generic scenario in which 

only part of the full set of features has been retained, say 

F. Let us further assume that an MLP has been trained 

using part of the training samples, whilst the remaining 

ones are left for validation purposes (by default 30% of 

the training samples). Upon training, the output for each 

sample in the validation set is then calculated. Be 

output(F) the corresponding list of values. To evaluate 

the feature importance related to a generic feature f , one 

can clear any contribution of that feature inside the MLP. 

Be output(F − f) the corresponding list of values, which 

are the outputs obtained –sample by sample– by clearing 

up the contribution of f . The importance of each feature f 

can be easily calculated by summing up the absolute-

value differences measured between output(F) and 

output(F − f). Hence, with varying f , this function 

allows to establish the ranking of all features. In 

particular, a small value of the ranking function 

evaluated on a feature f would account for low feature 

importance, and vice versa. Listing 4 shows a simplified 

listing of the corresponding Python function. 
 
def rank_features(model, valid_set): 
     #Rank features according to their usefulness" 
     outputs = model.eval_outputs(model.features, valid_set) 
     ranking = dict() 
     for f in model.features: 
          fscore = model.eval_outputs(features.drop(f), valid_set) 
          ranking[f] = sum(abs(outputs-fscore))  # L1 norm ... 
     return sorted(ranking.items(),key=itemgetter(1),reverse=True) 
 

Listing 4: Feature ranking for a single run is 

performed by looking at the difference between the full-

fledged model and the performance observed after the 

removal of each specific feature. The function returns the 

sorted list of feature-ranking pairs, in descending order. 

Note that features.drop(f) is intended to denote the set of 

features in which f has been temporarily removed. 

C. Assessing Feature Importance (on Multiple Steps) 

In the previous subsection, the ad hoc strategy for 

assessing feature importance has been shown for a single 

feature selection step. However, the high-level feature 

selection algorithm must cope with multiple steps in 

parallel. To come up with an overall ranking built upon 

the individual rankings generated by each step, a 

consensus-based strategy had to be devised and 

implemented. Instead of listing out the Python source 

code, let us give an insight of the process commenting in 

words. Be N the number of parallel steps (default 50). 

Hence, a run of make_steps would generate N rankings, 

each evaluated using the previously described ad hoc 

strategy. For the sake of simplicity, let us concentrate on 

a single feature, say f. Looking for f across all available 

rankings, in general its position will vary, depending on 

the importance assigned to it in each specific ranking. 

However, less important features are expected to occur 

far from the first positions of each ranking and vice versa. 

The insight that stands behind the adopted consensus-

based strategy is to sum up the positions in which f is 

found, being confident that big values would give strong 

support for disregarding the corresponding features and 

vice versa. Zooming out from the specific feature f, i.e., 

ranging over all selected features, one can easily draw 

the overall consensus-based ranking, to be used for 

dropping part of the available features. In so doing, the 

next multiple step can be run, starting over with a 

reduced set of features. Fig. 2 gives a snapshot of the 

consensus-based strategy devised for ranking features at 

each multiple step, which evaluates an overall ranking 

starting from all rankings generated by calling make_step 

(which in turn repeatedly calls make_single_step). Hence, 

the more a feature occurs on the upper side of each 

ranking on the left, the better will be its position in the 

overall ranking. 

 

Figure 2. Snapshot of the proposed consensus-based strategy. 

III. EXPERIMENTAL SETTING AND RESULTS 

Five datasets used in previous studies have been used 

as experimental work-bench. All datasets are 

downloadable from the Gene Expression Omnibus (GEO) 

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 56



at NCBI 2 . Table I reports their characteristics and 

establishes a link between datasets and articles in which 

they have been analysed. The time to relapse of the 

disease and the grade of the tumour were considered for 

labelling. All datasets share the same set of features 

(which amount to 22,283). Note that only the first dataset 

has been used for feature selection and for training the 

classifier. 
Considering a time span of five years and defining the 

degree of severity of the disease as S, individuals that 

have shown S > 1 have been labelled as positive, 

whereas those with degree S ≤ 1 as negative. The dataset 

GSE4922 has been used as reference, being the largest 

and well balanced. In particular, this dataset has been 

used to perform feature selection and to train and validate 

each classification model. Feature selection and model 

training has been performed by taking a sample of 

GSE4922 for training and the remaining part as 

validation (with proportions of 70% and 30% 

respectively). 

TABLE I. LIST OF THE MICROARRAY DATASETS USED TO PERFORM 

EXPERIMENTS 

Dataset Reference T 
O 
T 

P 
O 
S 

N 
E 
G 

 

GSE4922 Ivshina et al.   [9] 117 61 56 FS + 

Train. 
GSE1456 Pawitan et al.  [10] 57 32 25 Test 
GSE2990 Sotiriou et al.  [11] 68 22 46 Test 
GSE7390 Desmedt et al. [12] 59 34 25 Test 
GSE6532 Loi et al.         [13] 89 42 47 Test 
 

TABLE II. EXPERIMENTAL RESULTS OBTAINED ON THE 

MICROARRAY BENCHMARK DATASETS USED FOR TEST  

Dataset Accuracy Specifity Sensitivity 

GSE7390 0.78 0.64 0.88 
GSE2990 0.85 0.87 0.82 
GSE1456 0.88 0.92 0.84 
GSE6532 0.84 0.87 0.81 

 

The feature selection algorithm has been run once on 

the dataset GSE4922, giving rise to a small set of 25 

selected features. Note that the order of magnitude 

regarding the ratio between the full set of features and 

the number of selected ones is about 10^3 (meaning that 

only 1 feature over 1000 has been selected). The selected 

features have been used as input to train a full model, 

still on GSE4922. In so doing, the system has been left 

completely unaware of the remaining datasets (i.e., 

GSE1456, GSE2990, GSE7390, and GSE6532), until 

testing. To leverage the statistical significance of results, 

in fact 10 MLPs have been trained (starting with the 

same set of 25 features found by the feature selection 

algorithm). Table II reports the average performances 

 
2.https://www.ncbi.nlm.nih.gov/gds. 

obtained on the benchmark test sets after repeatedly 

training an MLP with one hidden layer and equipped 

with 20 nodes on the GSE4922 dataset. The hidden layer 

uses ReLU as activation function, whereas the output 

layer used a sigmoid. The problem at hand being binary, 

each MLP was designed with a single output. 
No significant variations on results has been evidenced 

along different runs. The table reports the averages of 

accuracy, specificity and sensitivity. 
 

IV. CONCLUSIONS 

This article has been focusing on a novel feature 

selection technique, to be used for improving the analysis 

of microarray expression data. The corresponding 

algorithm starts over with the full set of features and then 

drops part of them step-by-step, using a greedy strategy. 

To leverage the statistical significance of the selection, 

each step is in fact made up by several single 

independent steps run in parallel. Any such step uses the 

same ad hoc strategy to generate the corresponding 

feature ranking, whereas a consensus-based strategy has 

been devised and implemented to come up with an 

overall ranking at each “multiple” step. In so doing, 

feature removal is supported by a solid motivation, based 

on the ranking observed across many independent runs. 

The proposed algorithm allows to select only a small 

percent of features, with respect to the ones taken as 

input (the impressive feature selection ratio is about 

99.9%). Downstream of the feature selection phase, an 

MLP has been trained using only the selected features 

and tested on relevant benchmark datasets. It is worth 

pointing out that different runs of training and testing 

have shown a robust behaviour, with an average accuracy 

steadily attested to 84%. A very good balance has been 

observed on each test set also for specificity and 

sensitivity. As for future work, we are planning to issue a 

release of the source code able to run with Apache 

pySpark. Additional ranking functions (e.g., based on the 

L2 norm) are also being experimented.  
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