
Using Artificial Neural Networks to Perform

Feature Selection on Microarray Data

Giuliano Armano and Osvaldo Marullo
DMI, University of Cagliari, Italy

Email: armano@unica.it, osvaldo.marullo@gmail.com

Abstract—This article illustrates a feature selection

technique that makes use of artificial neural networks. The

problem being faced is the analysis of microarray

expression data, which requires a mandatory feature

selection step due to the strong imbalance between number

of features and size of the training set. The proposed

technique has been assessed on relevant benchmark

datasets. All datasets report gene expression levels taken

from female subjects suffering from breast cancer against

normal subjects. Experimental results, with average

accuracy of about 84% and very good balance between

specificity and sensitivity, point to the validity of the

approach.

Index Terms—feature selection, artificial neural network,

microarray data, cancer prediction

I. INTRODUCTION

Cancer prediction is a main research topic in

biomedicine, and microarrays are still the preferred tool

for gathering relevant gene expression data. Due to their

robustness and effectiveness, artificial neural networks

have been extensively used to generate models able to

deal with this kind of problems. To deepen this research

topic the reader can consult, for example, the review

work of Daoud and Mayo [1]. In this survey, the authors

summarize the research topic into i) filtering methods,

aimed at extracting representations that best describe the

gene expressions, ii) predicting methods, aimed at

maximizing the adopted performance measures (typically

accuracy), and iii) clustering methods, aimed at dividing

the genes or samples according to their similarities.
Typically, the analysis of data derived from

microarrays turns out to be very difficult, as any

reference dataset can always be thought of as a list of

gene expression values. In fact, with M number of

examples and N number of features, when M << N the

so-called “curse of dimensionality” problem arises. In

this case the negative impact due to the overwhelming

number of features can be dealt with by performing

feature reduction, feature selection, or both. However, in

the field of microarray analysis feature selection is

preferred, a relevant side-effect of the analysis being the

 Manuscript received December 29, 2021; revised March 22, 2022.

identification of one or more clusters of genes that are

responsible for the phenotype. A number of techniques

have been devised and proposed over time to perform

feature selection on microarray data. In particular, a

review article has been recently issued on feature

selection for cancer prediction by Hambali et al. [2].

Here the authors points out that achieving good

performance starting with the complete set of genes

remains a great challenge, due to the high dimensions,

small sample size, and presence of noise in gene

expression data. Then the authors recall the most relevant

feature selection techniques that have been devised to

overcome this problem, pointing that feature selection

methods are typically less critical and sensitive than fea-

ture reduction ones. A comprehensive taxonomy of the

various feature selection methods used for microarray

cancer classification is also proposed and used as

reference framework for discussing each specific method.

Further surveys have also been issued on the same topic

–see in particular Almugren and Alshamlan [3], and

Gunavathi et al. [4]. As for the feature selection tools

available off-the- shelf, the interested reader may also

consult the work of Tadist et al. [5]. The perspective of

the cited work is that feature selection techniques are

believed to become a game changer that can help to

reduce the complexity of genomic data, thus making it

easier to analyse it and translating it into useful

information. This work is also clearly influenced by the

discussion on eXplainable AI [6], [7], which tipped the

scales in favor of selecting features rather than

transforming them into another space. Despite the

growing amount of research that points to feature

selection as the main tool for contrasting the curse of

dimensionality, there is still room for devising ad hoc

solutions, in particular for those research fields in which

the order of magnitude of N/M is at least 10^2. This

article illustrates a feature selection technique, based on

multilayer perceptrons (MLPs, hereinafter), which is

framed within the broad category of “wrappers” [8]. To

prevent the occurrence of a selected feature set strongly

biased by a specific run of the algorithm, a greedy

selection strategy is enforced which repeatedly makes

use of a number of independent run steps. In so doing,

the possibility of disregarding relevant features is

strongly reduced. Experiments have been performed on

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 54
doi: 10.18178/ijpmbs.11.3.54-58

five datasets (available on GEO) derived from

experiments on microarrays related to patients with

breast cancer. One dataset was used for training and

validation, and the others for testing. Experimental

results point out that the accuracy, averaged on all

datasets used for testing, is about 84%. Moreover, a very

good balance between specificity and sensitivity has

been observed. Notably, although devised for the specific

research topic described in this article, the proposed

technique is general enough to be used also for other

application fields affected by the curse of dimensionality

problem.

II. METHODS

This section is aimed at illustrating the proposed

feature selection algorithm, including the heuristics used

for assessing feature importance. Before going into

details, let us make some general consideration on the

underlying framework.
The specific problem to be faced regards a dataset

consisting of about 400 examples, distributed on five

datasets. Each dataset is characterized by more than 22k

features (of course, each feature accounts for a specific

gene expression measured on a microarray experiment).

No doubt that for this problem the curse of

dimensionality holds, making it difficult for every

learning algorithm to come up with a useful

generalisation. For this reason a suitable feature selection

algorithm has been devised and implemented.

A. Overview of the Proposed Feature Selection

Algorithm

The insight that drawn the definition of the proposed

algorithm was to perform feature selection in several

steps by progressively reducing the set of selected

features. Starting with the full set of features, at each step

a small fraction of features is dropped, while the others

are passed on to the next step. The algorithm ends when

the wanted number of features is reached. The

corresponding function is shown in Listing 1. Note that

the algorithm iterates over a pair of functions, i.e.,

make_steps and drop_features. The former is entrusted

with evaluating feature importance across multiple steps

of feature selection run in parallel, whereas the latter is

entrusted with dropping a fixed percent of features

(default 5%), using a consensus-based strategy. Fig. 1

reports the dependencies between the main function and

the subsidiary ones. The diamond icon used in the figure

highlights that a “part-of” relation holds between the

connected boxes –e.g., the connector that links make_FS

and make_steps asserts that the former repeatedly calls

the latter.

def make_FS (dset , max_feat=20 , numruns=50 , ** kwargs) :
 # Perform feature selection using a greedy strategy
 selected = dset.features.copy () # start with all features
 while len (selected) > max feat :
 rankings = makesteps (dset , selected , num runs , ** kwargs)

 selected = drop features (selected , rankings)
 return selected
Listing 1: Algorithm for feature selection (simplified

listing). The algorithm starts with the full set of features,

whose number is then progressively decreased using a

greedy strategy. The algorithm repeatedly calls the

functions make steps and drop features.

Figure 1. Function tree that highlights the role of each subsidiary

function in the implementation of the proposed feature selection

algorithm (here reported as make_FS).

The function make_steps embeds an iteration as well.

This iteration is required to make the selection as much

independent as possible from the “history” of training, as

well as from the way training and validation set have

been randomly split. In other words, multiple steps of

feature importance evaluation are run to make the

dropping of non relevant features more sound from a

statistical perspective. A simplified version of the

corresponding Python function is reported in Listing 2.

The listing makes clear that a number of completely

independent feature selection steps are run in parallel.1 It

is worth pointing out that each step gives rise to its

specific ranking, so that all rankings are passed to the

function drop features for further processing.

def make_steps (dset , features , num_runs=50 , ** kwargs) :
 #Perform multiple steps of feature selection (default 50)
 rankings = [None for k in range (num_runs)]
 for k in range (num runs) :
 rankings [k] = make_single_step (dset , features , ** kwargs)
 return rankings

Listing 2: Multiple steps of feature selection

(simplified listing). Depending on the selected number of

run steps (see the num runs parameter), a battery of

feature selection steps is run. Each step gives rise to its

specific ranking of features. All rankings are returned by

the function for further processing.
The function make_single_step (see Listing 3) is the

core of the computation. In fact, make_FS repeatedly

calls make steps, which in turn repeatedly calls make

single step. Given a dataset and the currently selected set

of features,first make_single_step randomly splits the

dataset into training and validation set (of course, only

the selected features are preserved), then an MLP model

1.In fact, this part of the algorithm has been run in parallel using the

Ipyparallel Python library. A porting of the code to pySpark is on the

way.

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 55

is created, characterized by a single hidden layer

equipped with N*5% hidden nodes (with N number of

selected features). After fitting the model with the

training set, features are finally ranked according to an ad

hoc strategy, which is described in the next subsection.
def make_single_step(dataset, features, **kwargs):
 #Perform a single step of feature selection
 train_set, valid_set = dataset.split(random=True)
 train_set = train_set.project(on=features)
 valid_set = valid_set.project(on=features)
 model = make_MLP_model(features, **kwargs).fit(train_set)
 return rank_features(model, valid_set)

Listing 3: Single step of feature selection (simplified

listing). First, the given dataset is randomly split into

training and validation set. Then an MLP model is

created upon the training set and assessed on the

specified features only. Finally, feature ranking is

performed by looking at the difference between the full-

fledged model and the performance observed after the

removal of each specific feature.

B. Assessing Feature Importance (on Single Step)

To shed light on the adopted feature importance

measure, let us consider the generic scenario in which

only part of the full set of features has been retained, say

F. Let us further assume that an MLP has been trained

using part of the training samples, whilst the remaining

ones are left for validation purposes (by default 30% of

the training samples). Upon training, the output for each

sample in the validation set is then calculated. Be

output(F) the corresponding list of values. To evaluate

the feature importance related to a generic feature f , one

can clear any contribution of that feature inside the MLP.

Be output(F − f) the corresponding list of values, which

are the outputs obtained –sample by sample– by clearing

up the contribution of f . The importance of each feature f

can be easily calculated by summing up the absolute-

value differences measured between output(F) and

output(F − f). Hence, with varying f , this function

allows to establish the ranking of all features. In

particular, a small value of the ranking function

evaluated on a feature f would account for low feature

importance, and vice versa. Listing 4 shows a simplified

listing of the corresponding Python function.

def rank_features(model, valid_set):
 #Rank features according to their usefulness"
 outputs = model.eval_outputs(model.features, valid_set)
 ranking = dict()
 for f in model.features:
 fscore = model.eval_outputs(features.drop(f), valid_set)
 ranking[f] = sum(abs(outputs-fscore)) # L1 norm ...
 return sorted(ranking.items(),key=itemgetter(1),reverse=True)

Listing 4: Feature ranking for a single run is

performed by looking at the difference between the full-

fledged model and the performance observed after the

removal of each specific feature. The function returns the

sorted list of feature-ranking pairs, in descending order.

Note that features.drop(f) is intended to denote the set of

features in which f has been temporarily removed.

C. Assessing Feature Importance (on Multiple Steps)

In the previous subsection, the ad hoc strategy for

assessing feature importance has been shown for a single

feature selection step. However, the high-level feature

selection algorithm must cope with multiple steps in

parallel. To come up with an overall ranking built upon

the individual rankings generated by each step, a

consensus-based strategy had to be devised and

implemented. Instead of listing out the Python source

code, let us give an insight of the process commenting in

words. Be N the number of parallel steps (default 50).

Hence, a run of make_steps would generate N rankings,

each evaluated using the previously described ad hoc

strategy. For the sake of simplicity, let us concentrate on

a single feature, say f. Looking for f across all available

rankings, in general its position will vary, depending on

the importance assigned to it in each specific ranking.

However, less important features are expected to occur

far from the first positions of each ranking and vice versa.

The insight that stands behind the adopted consensus-

based strategy is to sum up the positions in which f is

found, being confident that big values would give strong

support for disregarding the corresponding features and

vice versa. Zooming out from the specific feature f, i.e.,

ranging over all selected features, one can easily draw

the overall consensus-based ranking, to be used for

dropping part of the available features. In so doing, the

next multiple step can be run, starting over with a

reduced set of features. Fig. 2 gives a snapshot of the

consensus-based strategy devised for ranking features at

each multiple step, which evaluates an overall ranking

starting from all rankings generated by calling make_step

(which in turn repeatedly calls make_single_step). Hence,

the more a feature occurs on the upper side of each

ranking on the left, the better will be its position in the

overall ranking.

Figure 2. Snapshot of the proposed consensus-based strategy.

III. EXPERIMENTAL SETTING AND RESULTS

Five datasets used in previous studies have been used

as experimental work-bench. All datasets are

downloadable from the Gene Expression Omnibus (GEO)

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 56

at NCBI 2 . Table I reports their characteristics and

establishes a link between datasets and articles in which

they have been analysed. The time to relapse of the

disease and the grade of the tumour were considered for

labelling. All datasets share the same set of features

(which amount to 22,283). Note that only the first dataset

has been used for feature selection and for training the

classifier.
Considering a time span of five years and defining the

degree of severity of the disease as S, individuals that

have shown S > 1 have been labelled as positive,

whereas those with degree S ≤ 1 as negative. The dataset

GSE4922 has been used as reference, being the largest

and well balanced. In particular, this dataset has been

used to perform feature selection and to train and validate

each classification model. Feature selection and model

training has been performed by taking a sample of

GSE4922 for training and the remaining part as

validation (with proportions of 70% and 30%

respectively).

TABLE I. LIST OF THE MICROARRAY DATASETS USED TO PERFORM

EXPERIMENTS

Dataset Reference T
O
T

P
O
S

N
E
G

GSE4922 Ivshina et al. [9] 117 61 56 FS +

Train.
GSE1456 Pawitan et al. [10] 57 32 25 Test
GSE2990 Sotiriou et al. [11] 68 22 46 Test
GSE7390 Desmedt et al. [12] 59 34 25 Test
GSE6532 Loi et al. [13] 89 42 47 Test

TABLE II. EXPERIMENTAL RESULTS OBTAINED ON THE

MICROARRAY BENCHMARK DATASETS USED FOR TEST

Dataset Accuracy Specifity Sensitivity

GSE7390 0.78 0.64 0.88
GSE2990 0.85 0.87 0.82
GSE1456 0.88 0.92 0.84
GSE6532 0.84 0.87 0.81

The feature selection algorithm has been run once on

the dataset GSE4922, giving rise to a small set of 25

selected features. Note that the order of magnitude

regarding the ratio between the full set of features and

the number of selected ones is about 10^3 (meaning that

only 1 feature over 1000 has been selected). The selected

features have been used as input to train a full model,

still on GSE4922. In so doing, the system has been left

completely unaware of the remaining datasets (i.e.,

GSE1456, GSE2990, GSE7390, and GSE6532), until

testing. To leverage the statistical significance of results,

in fact 10 MLPs have been trained (starting with the

same set of 25 features found by the feature selection

algorithm). Table II reports the average performances

2.https://www.ncbi.nlm.nih.gov/gds.

obtained on the benchmark test sets after repeatedly

training an MLP with one hidden layer and equipped

with 20 nodes on the GSE4922 dataset. The hidden layer

uses ReLU as activation function, whereas the output

layer used a sigmoid. The problem at hand being binary,

each MLP was designed with a single output.
No significant variations on results has been evidenced

along different runs. The table reports the averages of

accuracy, specificity and sensitivity.

IV. CONCLUSIONS

This article has been focusing on a novel feature

selection technique, to be used for improving the analysis

of microarray expression data. The corresponding

algorithm starts over with the full set of features and then

drops part of them step-by-step, using a greedy strategy.

To leverage the statistical significance of the selection,

each step is in fact made up by several single

independent steps run in parallel. Any such step uses the

same ad hoc strategy to generate the corresponding

feature ranking, whereas a consensus-based strategy has

been devised and implemented to come up with an

overall ranking at each “multiple” step. In so doing,

feature removal is supported by a solid motivation, based

on the ranking observed across many independent runs.

The proposed algorithm allows to select only a small

percent of features, with respect to the ones taken as

input (the impressive feature selection ratio is about

99.9%). Downstream of the feature selection phase, an

MLP has been trained using only the selected features

and tested on relevant benchmark datasets. It is worth

pointing out that different runs of training and testing

have shown a robust behaviour, with an average accuracy

steadily attested to 84%. A very good balance has been

observed on each test set also for specificity and

sensitivity. As for future work, we are planning to issue a

release of the source code able to run with Apache

pySpark. Additional ranking functions (e.g., based on the

L2 norm) are also being experimented.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Osvaldo Marullo and Giuliano Armano have

contributed to the research, data analysis and software

programming. And both have approved the final version.

REFERENCES

[1] M. Daouda and M. Mayo, “A survey of neural network-based

cancer prediction models from microarray data,” Artificial

Intellgence in Medicine, vol. 97, pp. 204-214, 2019.
[2] M. A. Hambali, T. O. Oladele, and K. S. Adewole, “Microarray

cancer feature selection: Review, challenges and research

directions,” International Journal of Cognitive Computing in

Engineering, vol. 1, pp. 78-97, 2020.

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 57

[3] N. Almugren and H. M. Alshamlan, “A survey on hybrid feature

selection methods in microarray gene expression data for cancer

classification,” IEEE Access, vol. 7, pp. 78533-78548, 2019.
[4] C. Gunavathi, K. Premalatha, and K. Sivasubramanian, “A survey

on feature selection methods in microarray gene expression data

for cancer classification,” Research Journal of Pharmacy and

Technology, vol. 10, pp. 1395-1401, 2017.
[5] K. Tadist, S. Najah, N. S. Nikolov, F. Mrabti, and A. Zahi,

“Feature selection methods and genomic big data: A systematic

review,” Journal of Big Data, vol. 6, no. 79, pp. 1-24, 2019.
[6] D. Gunning, Explainable artificial intelligence (XAI), Technical

Report DARPA-BAA-16-3, Defense Advanced Research Projects

Agency (DARPA), 2017.
[7] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial

intelligence: A survey,” in Proc. 41st International Convention on

Information and Communication Technology, Electronics and

Microelectronics, Croatia, 2018, pp. 210-215.
[8] N. Kushmerick, D. S. Weld, and R. Doorenbos, “Wrapper

induction for information extraction,” in Proc. IJCAI-97, 1997.
[9] A. V. Ivshina, et al., “Genetic reclassification of histologic grade

delineates new clinical subtypes of breast cancer,” Cancer

Research, vol. 66, pp. 10292-10301, 2006.
[10] Y. Pawitan, et al., “Gene expression profiling spares early breast

cancer patients from adjuvant therapy: derived and validated in

two population-based cohorts,” Breast Cancer Research, vol. 7,

no. 6, article R963, 2005.
[11] C. Sotiriou, et al., “Gene expression profiling in breast cancer:

Understanding the molecular basis of histologic grade to improve

prognosis,” Journal of National Cancer Institute, vol. 98, pp. 262-

272, 2006.
[12] C. Desmedt, et al., “Strong time dependence of the 76-gene

prognostic signature for node-negative breast cancer patients in

the TRANSBIG multicenter independent validation series,” Clinic

Cancer Research, vol. 13, pp. 3207-3214, 2007.

[13] S. Loi, et al., “Definition of clinically distinct molecular subtypes

in estrogen receptor-positive breast carcinomas through genomic

grade,” Journal of Clinical Oncology, vol. 25, no. 10, pp. 1239-

1246, 2007.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Osvaldo Marullo is PhD student in

Information Technology at the University of

Cagliari. His major research interests are on

artificial neural networks applied to

bioinformatics and on feature

ranking/selection algorithms.

Giuliano Armano is associate professor of

computer science at the University of Cagliari.

His major research interests are on artificial

neural networks applied to bioinformatics and

on classifier / feature performance measures.

International Journal of Pharma Medicine and Biological Sciences Vol. 11, No. 3, July 2022

©2022 Int. J. Pharm. Med. Biol. Sci. 58

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

