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Abstract—Medical image segmentation is one of the 

research directions that are interested in recent years. The 

Unet model is one of the most architecture commonly used 

for medical image segmentation. However, Unet and Unet-

based models still have a drawback that is concentrating 

only on the last feature output of the convolution unit and 

forgetting the feature of the previous convolution in the 

node. In this paper, we propose a new model based on Unet 

model, called by TDC-Unet that would exploit the intra-

feature of the nodes in the Unet architecture. We also apply 

the Dilated Convolution (DC) and dense connection in the 

nodes structure. We used four datasets, that cover different 

modalities of medical image: colonoscopy, dermoscopy, and 

Magnetic Resonance Imaging (MRI) to evaluate the 

proposed model. The applications in our experiment are: 

nuclei segmentation, polyp segmentation, left atrium 

segmentation, and skin lesion segmentation. The 

experimental results show that our model achieves better 

results than the current models.   

 

Index Terms—medical image segmentation, nuclei 

segmentation, polyp segmentation, left atrium segmentation, 

skin lesion segmentation, Unet structure, dilated 

convolution 

 

I. INTRODUCTION 

Medical image segmentation is an important step in 

diagnosis and pre-surgery. It greatly aids the doctor in 

diagnosis and decision-making before surgery. Medical 

image processing is one of the challenges that are of 

concern for the researchers. There are many approaches 

to the medical image segmentation challenge. However, 

deep learning is showing outstanding advantages 

compared to traditional image processing methods. Two 

deep learning architectures that are commonly used for 

segmentation tasks are Fully Convolutional Network 

(FCN) [1] and Unet [2]. Deep learning is used for many 

medical imaging segmentation applications such as liver 

and liver tumor [3], [4], brain tumor [3], [5], [6], polyp 

[3], [7]-[9], nuclei [3], [5], [10]. 

The Unet is most commonly used as a platform 

architecture for medical image segmentation models [11]. 

The advantages of Unet are to combine low-level, coarse-

grained features of the encoder with high-level, fine-
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grained features of the decoder node. However, Unet still 

has some disadvantages such as: optimizing for different 

applications with different numbers and sizes of datasets 

is not easy, the skip connection structure still does not 

take full advantage of the features from the encoder node. 

The traditional Unet models and Unet-based models are 

used in many medical image segmentation applications. 

These studies focus on solving the shortcomings of Unet 

by modifying the node structure of the encoder and 

decoder blocks [12], [13], or changing the structure of the 

skip connection [3]-[5], or using the cascade structure 

[10], [14], [15].   

The conventional Unet and the new approaches based 

on Unet only focus on the last output feature of the 

convolution node. The features from the previous nodes 

were forgotten. To address this problem, in this paper, we 

propose a new architecture based on Unet, called TDC-

Unet. TDC-Unet consists of 3 sub-Unets arranged in 

parallel. With the new architecture, the intra-features of 

the nodes are explored. All of the features in the nodes 

would be utilized. The skip connections also use all the 

features from the encoder node to combine with the 

decoder node. The convolution was used in the nodes is 

Dilated Convolution (DC) [16]. The advantage of DC is 

that it covers a large feature area without using the 

pooling function. With the same number of DC 

parameters, it is possible to extend the region of interest 

larger than traditional convolution. The dense structure 

[17] is also used in the nodes, tackle the vanishing-

gradient problem, and use the feature more efficient. 

In summary, the contributions of this study are: (i) 

introduce the new Unet structure network called TDC-

Unet, for medical image segmentation. The new model 

exploits the intra-feature of the convolution node more 

efficient; (ii) verify the efficiency of DC and dense 

structure for the medical image segmentation challenges; 

(iii) evaluate the effectiveness of the model on 4 datasets 

that cover different modalities of medical image, thereby 

proving the high generality of the proposed model. 

II. TDC-UNET NETWORK 

Fig. 1(a) illustrates the network structure of the TDC-

Unet model. Similar to conventional Unet, TDC-Unet 

consists of two main parts: encoder and decoder. Each 

part includes four convolution nodes. The transition node 
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is at the bottom of the network. There are three 

convolution units in the nodes of the TDC-Unet. The 

convolution unit is composed of two convolutional 

functions followed by the ReLU function and batch 

normalization (BN) (Fig. 1(b)). The connections of the 

nodes are detailed in Fig. 1(c). 

In this study, we apply the dense connection to the 

nodes of the TDC-Unet. For the convolution function, we 

employ the dilated convolution with the dilation rate is 3, 

2, and 1 for the first, the second, and the third 

convolution units, respectively. Formally, let 
,

/

i j

E D
x  is the 

output feature of the jth convolution unit in the ith node 

and ( )r
C  is a dilated convolution function, that has the 

dilation rate equal to r, followed by the ReLU function 

and BN. The subscript letter, “E/D”, denotes the encoder 

or the decoder. The output features of the node are 

described as: 
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where the    is the concatenation function. From the 

second to the fourth encoder node, the output features are 

computed as follows, 
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where the ( )P  depicts a max pooling function. The 

output features of the transition node are obtained by 

getting the feature map of the fourth encoder node, are 

described as:  
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Figure 1.  (a) The architecture of TDC-Unet model, (b) the convolution unit, and (c) the node structure.

In the decoder part, the nodes get the features from the 

encoder node and lower decoder nodes. The output 

features of the decoder nodes are computed as 
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where ( )U  indicates an up-convolution operation. 
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The output of the convolution units of the top decoder 

node  1,1 1,2 1,3
, ,

D D D
x x x  is followed by the sigmoid function 

to achieve the results  
1 2 3

, ,
U U U

O O O . The final output of 

the TDC-Unet model 
TDC , which is obtained by using 

the below equation. 

( )
1 2 3

, ,
TDC U U U

sigmoid O O O =                  (8) 

Table I shows the architecture of TDC-Unet in detail. 

The convolution kernel, which is used for the convolution 

units, is the size of 3x3. 

TABLE I.  THE ARCHITECTURE OF TDC-UNET 

Nodes Encoder Decoder 

1 

16 x (DiConv|3 + ReLU)2 + BN + [(2x2) maxpooling] 

16 x (DiConv|2 + ReLU)2 + BN + [(2x2) maxpooling] 

16 x (DiConv|1 + ReLU)2 + BN + [(2x2) maxpooling] 

[(2x2) deconv] + 16 x (DiConv|3 + ReLU)2 + BN 

[(2x2) deconv] + 16 x (DiConv|2 + ReLU)2 + BN 

[(2x2) deconv] + 16 x (DiConv|1 + ReLU)2 + BN 

2 

32 x (DiConv|3 + ReLU)2 + BN + [(2x2) maxpooling] 

32 x (DiConv|2 + ReLU)2 + BN + [(2x2) maxpooling] 

32 x (DiConv|1 + ReLU)2 + BN + [(2x2) maxpooling] 

[(2x2) deconv] + 32 x (DiConv|3 + ReLU)2 + BN 

[(2x2) deconv] + 32 x (DiConv|2 + ReLU)2 + BN 

[(2x2) deconv] + 32 x (DiConv|1 + ReLU)2 + BN 

3 

64 x (DiConv|3 + ReLU)2 + BN + [(2x2) maxpooling] 

64 x (DiConv|2 + ReLU)2 + BN + [(2x2) maxpooling] 

64 x (DiConv|1 + ReLU)2 + BN + [(2x2) maxpooling] 

[(2x2) deconv] + 64 x (DiConv|3 + ReLU)2 + BN 

[(2x2) deconv] + 64 x (DiConv|2 + ReLU)2 + BN 

[(2x2) deconv] + 64 x (DiConv|1 + ReLU)2 + BN 

4 

128 x (DiConv|3 + ReLU)2 + BN + [(2x2) maxpooling] 

128 x (DiConv|2 + ReLU)2 + BN + [(2x2) maxpooling] 

128 x (DiConv|1 + ReLU)2 + BN + [(2x2) maxpooling] 

[(2x2) deconv] + 128 x (DiConv|3 + ReLU)2 + BN 

[(2x2) deconv] + 128 x (DiConv|2 + ReLU)2 + BN 

[(2x2) deconv] + 128 x (DiConv|1 + ReLU)2 + BN 

Transition 

256 x (DiConv|3 + ReLU)2 + BN 

256 x (DiConv|2 + ReLU)2 + BN 

256 x (DiConv|1 + ReLU)2 + BN 

“Diconv|d” denotes the 3x3 dilated convolution, ‘d’ is the dilation rate. The superscript number depicts the number of the functions.  

All convolutional layers include the dropout. 

III. EXPERIMENTS  

A. Datasets and Data Pre-Processing 

We used four datasets that cover different modalities 

of medical images, such as MRI, colonoscopy, 

fluorescence, and dermoscopy. Fig. 2 shows some 

examples of the datasets used in our experiments. 

 
Figure 2.  Some examples of the datasets used in this study. The first 

and the third columns present the original images while the second and 

the fourth columns indicate the ground truths (GT). 

The first dataset is the nuclei dataset, is provided by 

Data Science Bowl 2018 segmentation challenge (DSB 

Challenge 2018). It consists of 670 nuclei images with 

the size of 256x256 from two modalities: brightfield and 

fluorescence. The image data is accompanied by 

segmentation results (ground truth). In our experiments, 

the Nuclei dataset is divided into three parts: 423 images 

for training, 108 images for validation, and 130 images 

for testing. In training and testing progress, we resize the 

image to the size of 128x128. 

The second is the CVC-clinicDB dataset, which comes 

from the 2015 MICCAI sub-challenge on automatic 

polyp detection. There is a total of 612 images with a size 

of 384x288 in the dataset. The images are extracted from 

25 different colonoscopy videos and contain several 

examples of polyps. The ground truths are also included. 

For training, the dataset is separated as follows: 489 

images for training and validation (20% used for 

validation), 123 images for testing. The images are re-

scaled to the size of 224x224 for training and testing the 

models. 

The third dataset is the skin lesion dataset, which is 

provided by the ISIC-2018 Challenge. The dataset 

includes 2954 high-resolution dermoscopy images with 

different sizes. For training, we divide the dataset into 

three parts: training part (1660 images), validation part 

(415 images), and testing part (519 images). Both training 

and testing are done based on 224x224 images. 

The last dataset is a CT volumes dataset for the left 

atrium segmentation challenge. It is provided by Medical 

Segmentation Decathlon Challenge 2018 (MSD 2018). 

There are 20 MRI volumes for training and 10 volumes 

for testing. We only use the training part of the dataset in 

our experiments. There are 2271 2D slices with a size of 

320x320 pixels. The dataset is divided into two parts: 15 

volumes for training and validation (1702 slices, 20% 

used for validation), 5 volumes (569 slices) for testing. In 

order to reduce the calculation time, we crop the slices to 

a size of 128x128 after applied the Hounsfield unit in a 

range of [500,1500]. Another advantage of cropping is to 

reduce the case of false positives. Table II summarizes 

the dataset used in our experiments. 
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All of the datasets are trained with data augmentation 

techniques. We applied the same data augmentation 

techniques for each dataset, including shearing, rotation, 

zoom, flip, and shift. 

TABLE II.  SUMMARY OF THE DATASET USED IN THIS PAPER 

Segmentation 

Application 

No 

images 

/slices 

Size Modality Provider 

Nuclei 670 256x256 
brightfield 

and 

fluorescence 

DSB 

Challenge 

2018 

Polyp (CVC-

clinicDB) 
612 384x288 Colonoscopy 

MICCAI 

Challenge 

2015 

Left atrium 2271 320x320 MRI 
MSD 

Challenge 

2018 

Skin lesion 2594 Variable Dermoscopy 
ISIC 

Challenge 

2018 
 

B. Experiments Setting 

In our study, we used the hybrid loss to address the 

imbalance problem. The hybrid loss is a combination 

between Dice loss and cross-entropy loss. We use two 

types of cross-entropy loss that are Binary Cross-Entropy 

(BCE) and Weighted Cross-Entropy (WCE). The 

formulas of the hybrid loss are expressed by 

DC CE
L L L= +                                  (9) 

where LCE and LDC represent the cross-entropy loss and 

the dice loss, respectively. The LCE consists of two types 

LWCE and LBCE.  The LWCE, LBCE and LDC are computed as: 

( ) ( ) ( )( )
1

1
1 log 1 log 1

N

WCE i i i i

i

L w g p w g p
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log 1 log 1
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+
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+ +
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
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where pi is the probability that voxel i is foreground, and 

gi indicates the probability of voxel i that is the 

background. The N is the number of the voxels that are 

predicted, the w denotes the weight, and the ε is a very 

small value to prevent the denominator is zero. 

Our experimental are conducted by the Keras package 

with Tensorflow as the backend. The he-normal 

distribution initializer, which is proposed by He et al. 

[18], is used to initialize the weights. The optimizer is 

used in the model is Adam optimizer, and the networks 

are trained with an initial learning rate of 3e-4 for all of 

the datasets except the left atrium dataset initialize with a 

learning rate of 1e-3. The learning rate is updated by the 

learning rate scheduler, which is described as: 

( )/10
0.9

epochs
lr lr=                         (13) 

And a dropout rate of 0.2 is applied for preventing the 

over-fitting. The early stopping mechanism is also used. 

All experiments are conducted by a workstation with 

Intel Xeon Silver 4114 CPU, GRID Virtual GPU V100D-

8Q, and 32GB RAM memory. Table III shows details of 

the learning setting of the models for the segmentation 

application. 

TABLE III.  THE DETAILS OF THE LEARNING SETTINGS OF THE 

MODELS 

App. 
Loss 

function 

Initial 

Learning 

rate  

No. of 

Epochs 

Batch 

size 

Input 

size 

Nuclei Dice+BCE 3e-4 200 16 128x128 

Polyp Dice+WCE 3e-4 200 8 224x224 

Skin 

lesion  
Dice+BCE 3e-4 200 8 224x224 

Left 

atrium 
Dice+WCE 1e-3 100 16 128x128 

IV. RESULT AND DISCUSSION 

To evaluate the effectiveness of the proposed model, 

we also employed Unet and Unet++ models with the 

same strategies and settings. The evaluation metrics are 

used in this study include three metrics: Dice Coefficient 

(DSC), F1-score, and mean Intersection over Union 

(mIoU). These metrics are described as follow: 

2
( , )

G P
DSC G P

G P

 
=

+
                       (14) 

( , )
G P

mIoU G P
G P


=


                        (15) 

( )

1
1

2

TP
F score

TP FP FN

− =

+ +

                 (16) 

where G denotes the ground truth, P denotes the predicted 

values. TP, FP, TN, FN depict the number case of true 

positives, false positives, true negatives, and false 

negatives, respectively. 

Fig. 3 presents the segmentation results on the datasets. 

As seen in Fig. 3, our model performance is better than 

Unet and Unet++ on all evaluation metrics. The number 

of parameters for TDC-Unet is more than Unet (8.4 

million against 7.8 million), but less than Unet++ (8.4 

million against 9.5 million). In comparison with the Unet, 

our models significantly improve segmentation 

performance. For nuclei segmentation, the DSC, F1-score 

and mIoU values of TDC-Unet are greater 0.39%, 0.33% 

and 0.68%, respectively. The evaluation metrics on polyp 

segmentation increased 0.64%, 0.82% and 1.18%. The 

increments of skin lesion applications are 2.62%, 3.04%, 

and 3.94%. For left atrium segmentation, the values are 

improved by 1.06%, 1.42%, and 1.66%. 
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Observing the results, we can see that the segmentation 

results on skin lesion are more improved compared to the 

rest. The reason for this difference is the effect of DC, the 

segmented objects in skin lesion images usually have a 

large proportion in the image. The result is the opposite 

of nuclei segmentation, the least improvement due to the 

generally small size of the objects in the image. This 

proves the influence of DC on the segmentation result of 

the large object in the image. This is the advantage of DC 

in the image segmentation task. However, DC has not 

shown efficacy for small objects segmentation. 

Furthermore, the computation time for DC is larger than 

that for traditional convolution. 

 

Figure 3.  The quantitative segmentation results of the models that are implemented in our experiments.

Fig. 4 shows some examples of segmentation results of 

the models that were performed in our experiments. We 

can observe that TDC-Unet model got better results than 

Unet and Unet++. Table IV compares our model with 

some popular models on four datasets. The results 

indicate that our model achieves better results than other 

networks except for the Deeplab V3+ on skin lesion 

segmentation.  

 

Figure 4.  Some examples of the segmentation results. The first row 

shows the nuclei segmentation results. The second row illustrates the 

polyp segmentation results. The third one presents the skin lesion 

segmentation results. The last one shows the segmentation results of the 

left atrium. 

TABLE IV.  THE COMPARISON WITH POPULAR MODELS 

 
Models 

Evaluation metrics (%) 

DSC F1-score mIoU 

N
u

cl
ei

 Unet 91.87 93.65 85.00 

Unet++ 92.24 93.98 85.64 

Double-Unet [10] 91.33 - 84.07 

TDC-Unet 92.26 93.98 85.68 

P
o
ly

p
 Unet 90.20 90.43 82.20 

Unet++ 86.11 86.79 76.02 

GAN [9] 88.48 - 81.27 

TDC-Unet 90.84 91.25 83.38 

S
k

in
 

le
si

o
n

 Unet 83.15 84.28 71.22 

Unet++ 82.84 85.29 71.16 

Deeplab V3+ [19] 85.90 - 77.40 

TDC-Unet 85.77 87.32 75.16 

L
ef

t 

a
tr

iu

m
 Unet 90.61 90.65 83.05 

Unet++ 88.96 89.73 80.32 

TDC-Unet 91.67 92.07 84 .71 

V. CONCLUSION 

In conclusion, this paper proposed the new deep 

learning model, TDC-Unet, for medical image 

segmentation. The TDC-Unet model exploited the multi-

feature from three sub-Unet models to improve the 

segmentation performance. We also applied DC and 

dense structures to the nodes of the model, and the 

performance of the model improves with DC and dense 

connection. The efficiency of the model was evaluated on 

four datasets that cover different modalities of medical 

images. The TDC-Unet achieves better segmentation 
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results than the popular network models. This 

demonstrates the generality of the proposed model. 
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