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Abstract—Biomedical sciences have experienced growing 

interest from mathematicians and researchers in developing 

mathematical models able of mimicking the physiological 

characteristics of human body and its processes and 

designing control for the medical problems. Different 

biomedical modeling techniques have been developed for a 

variety of medical problems requiring monitoring and 

control, which have improved lives of people with those 

medical problems. Diabetes is considered as one of the most 

important medical problem that needs attention from 

research community. This paper focuses on designing an 

advance control technique called Linear Model Predictive 

Control for improving glycemic regulation for type ‘I’ 

diabetic patients. The glucose-insulin dynamic model in 

diabetic patients discussed in this paper is a four-state 

nonlinear model, which is linearized before applying linear 

control techniques. The patient model has been investigated 

in the paper by presenting a comparison of Linear Model 

Predictive Control with Proportional Integral Derivative 

control and State Feedback control. The results show that 

our proposed scheme results in improved glycemic 

regulation and ensures proper check on insulin infusion rate 

in order to avoid both hyperglycemia and hypoglycemia. All 

the control techniques are simulated in MATLAB and 

Simulink environment.  

 

Index Terms—biomedical modeling, artificial pancreas, 

model predictive control, single-input-single-output, 

glycemic control 
 

I. INTRODUCTION 

Diabetes is a metabolic disorder and according to 

reports in 2014 it has affected around 9% of adult 

population, in comparison with 108 million in 1980. This 

is nearly double prevalence of diabetes globally since 

1980, rising from 4.7% to 8.5% in the adult population 

[1]-[3]. People with diabetes normally have higher blood 

glucose levels, referred as hyperglycemia. Diabetes type 

‘I’ and type ‘II’ are the two main types of diabetes. Type 

‘I’ diabetes is also called Insulin Dependent Diabetes 

Mellitus. It accounts for 5–10% of the patients suffering 

from diabetes, Type ‘II’ diabetes is also known as Non-

Insulin Dependent Diabetes Mellitus [4]-[6]. The β-cells 

present in pancreas are responsible for production of 

 
Manuscript received May 17, 2021; revised August 3, 2021. 

insulin for blood glucose regulation in human body. 

Destruction of these β-cells due to any possible reason 

effects endogenous insulin production leading to T1D 

development.  For keeping glucose levels under normal 

range and for avoiding the long-term complications 

which are associated with both hypoglycemia and 

hyperglycemia, T1D diabetics need exogenous 

administration of insulin. Diabetes effects the lifestyles of 

type ‘I’ diabetic person in numerous ways. Immune 

system destroying B-cells causes deficiency of 

indigenous insulin. This deficiency is fulfilled by an 

external source of insulin in order to maintain normal 

blood glucose concentration and avoid consequences of 

both hyperglycemia and hypoglycemia. Fig. 1 explains 

blood regulation in human body and shows how pancreas 

and liver controls the glucose-insulin metabolism in 

human body. Few of the symptoms present in medical 

literature are Polydipsia which is a very high extent 

thirsty state, Polyphagia which is a crunch hungry state 

and Polyuria which is an uncontrolled urination. Failure 

in regulation leads to numerous health problems which 

includes heart disease, kidney disease and blindness etc.  

Normal range for glucose concentration ranges between 

60mg/dl to 126mg/dl [7]. Glucose levels dropping below 

the basal glucose levels is called hypoglycemic state, 

whereas glucose levels rising above this basal level is 

termed as hyperglycemia. Considerable efforts by 

biomedical research community are witnessed in past 

decades in order to achieve tighter glycemic control by 

proper and risk-free automatic control process [8]. 

The administration of insulin infusion rate can be 

achieved by properly monitoring glucose levels inside the 

body of diabetic patient. There are some of the 

components of the artificial pancreas available in market 

in form of wearable devices, which are helping people 

with diabetes but they standalone do not provide a 

complete automatic solution to the diabetes problem. On 

other hand biomedical and control engineers are trying to 

automate the whole process and come up with a complete 

solution, they are yet to achieve such a success. The 

recent decades have witnessed development of many 

mathematical models describing the glucose-insulin 

dynamics systems in humans. This apt to coming up with 

an artificial pancreas as close to human pancreas as 
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possible, have gained so much attention from research 

community over the past few decades and if researchers   

get close to develop such a complete and autonomous 

system satisfying all the results through proper trail, it 

surly will be life changing for diabetic people and will 

revolutionize the state of diabetes management.  

 

Figure 1. Blood glucose regulation in humans. 

This need to come up with an artificial pancreas have 

accelerated the area of research in biomedical engineering 

focusing on diabetes management. A verity of control 

techniques and algorithms have been applied, 

investigated for achieving glycemic control in type ‘I’ 

diabetes patients. Bergman Minimal Model (MM) is the 

most commonly used mathematical model to describe the 

phenomenon of glucose-insulin dynamics in humans [9]-

[15]. This basic model provided bases of the research 

work done in the field of diabetes management and 

accelerated the pace of the research dramatically. This 

basic 3rd Order Minimal Model developed by Richard N. 

Bergman and his coworkers in 1970s comprises of a set 

of 3 differential equations with some unidentified 

parameters, parameters which explains physiological 

process in human body. The variation in these 

physiological and pathological characteristics in diabetic 

patients leads to difference of these unknown parameters 

among these diabetic patients. By means of this basic 

version of Bergman MM and its extended versions, 

variety of control techniques and algorithms have been 

tested in order to address the glucose regulation control 

problem, control techniques ranging from simple linear 

control to complex nonlinear control techniques [16]-[24]. 

Fisher [16] proposed insulin infusion by means of a 

semi-closed loop algorithm and applied it on MM of 

glucose. Fisher’s design was based on plasma glucose 

samples taken after each 3 hours. The study focused the 

blood glucose levels without taking some factors into 

consideration, i.e. insulin production rate and free plasma 

insulin concentration as glucose concentration increases 

above normal level. Furler [17] used the modified version 

of the glucose MM. The Insulin antibodies were added to 

the MM of glucose while insulin secretion was removed. 

Linear interpolation was used in order to calculate insulin 

infusion rate for the diabetic patient. Some deviations in 

insulin concentration and other model parameters were 

neglected in the study. Ibbini, Masadeh and Amer [18] 

verified the MM of glucose by designing a closed loop 

optimal control system in order to achieve glycemic 

control in diabetic patients. D. Boiroux and V. B átora 

[19] tested results of adaptive MPC on a much complex 

11th order model explaining the glucose insulin dynamics 

for glycemic control in diabetic patients. L. Magni [20]-

[24] have applied variants of both linear and nonlinear 

MPC on a much complex 12th order model of which 

explains the glucose insulin dynamics in order to achieve 

better glycemic control in diabetic patients. The control 

techniques and algorithms developed for glucose 

regulation, does not provide tighter glycemic, and 

sometimes when catering for hyperglycemia they often 

suggest a value of insulin that causes glucose of lower 

down to a dangerous level. Which leads to a condition 

called hypoglycemia, which if go unnoticed can cause 

serious damage to a diabetic patient. Serious damage can 

be in the form of comma or even death in case of severe 

hypoglycemia. So, the main focus of the control 

techniques is handling such situations. In order to avoid 

the overdose of insulin, there is need of a control 

technique which can limit insulin infusion to avoid the 

consequences of overdosing. The control technique 

should take some of the state constraints and input 

constraints into consideration in order to avoid excess or 

deficiency of the insulin infusion while administering 

insulin for glycemic control. This paper provides a 

detailed comparison of a powerful adaptive control 

technique Linear Model Predictive Control (LMPC) with 

simplified control techniques like State Feedback control 

and Proportional-Integral-Derivative (PID) control for 

improved glycemic control in people with type ‘I’ 

diabetes. MPC have the capability to be considered a very 

promising approach for glycemic control while 

addressing the diabetes medical problem because of its 

beauty to handle constraints at input, output and states of 

the system.  Different glucose insulin dynamic models 

have been exploited with linear and nonlinear MPC 

strategies. 

Section II of the paper presents the linearized version 

of the extended 4th order nonlinear model of glucose 

inulin system, which in extension of basic 3rd Order 

Bergman MM, in Section III the proposed Linear Model 

Predictive Control technique is presented, Section IV 

have simulation and results of simplified linear control 

techniques and the proposed controller and the results are 

compared in the form of various figures and a table while 

the research paper is concluded in Section V. 

II. MATHEMATICAL MODELLING 

Mathematical models mimicking natural phenomenon 

of human physiology have accelerated the nature of 

research in biomedical sciences. With the help of such 

models researchers have founds new horizons in the field 

of biomedical sciences and medicines. In case of diabetes 

medical problem, some factors like food intake, 

physiological and environment conditions changes 

glucose levels within human body significantly, it is 

necessary to come up with mathematical models which 

are able capture real dynamics for control design [9]-[15]. 
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For simplifying the patient model for controller design 

and for applying simplified linear control techniques, the 

nonlinear MM was linearized under given operating 

conditions [8]. Equilibrium points were computed to be 

𝑥0 = [859.6667,0,8,0] after linearizing the model. Table I 

shows that during fasting state the lower bond glucose 

levels is 80 mg/dl while the upper bond is 100 mg/dl for a 

normal healthy person [7].  

TABLE I. CHART FOR BLOOD GLUCOSE LEVELS 

 
The extension of MM of glucose-insulin has been 

explored for the healthy subjects, in which case pancreas 

secretes insulin in response to the actual glucose levels in 

the blood sensed by the pancreas [25]. The extended 

version of the glucose-insulin MM is comprised of 3 

portions: first is the glucose disappearance MM, (g and v), 

second is the MM of insulin kinetics, (i) and third is the 

first-order pump dynamics (w). 

�̇�(𝒕) = −[𝒑𝟏 + 𝒗(𝒕)]𝒈(𝒕) + 𝒑𝟏𝒈𝒃 

�̇�(𝒕) = −𝒑𝟐𝒗(𝒕) + 𝒑𝟑(𝒊(𝒕) − 𝒊𝒃) 

�̇�(𝒕) = −𝒏𝒊(𝒕) + 𝜸[𝒈(𝒕) − 𝒉]𝒕 

�̇�(𝒕) =
𝟏

𝒂
(−𝒘(𝒕) + 𝒖(𝒕)) 

(1) 

where g(t) measured in (mg/dl) represents glucose 

concentration in plasma, v(t) measured in  ( 𝑚𝑖𝑛−1 ) 

represents remote compartment insulin, i(t) measured in 

(µU/ml) is plasma insulin concentration, w(t) is the 

insulin infusion rate, u(t) represents the input insulin 

infusion command, 𝑖b  measured in  (µU/ml) is basal 

insulin level,  𝑔b  measured in  (mg/dl) is basal blood 

glucose level, p1 measured in (1/min) is the insulin 

independent rate constant of glucose uptake in muscles 

and liver, p2 measured in (1/min) is the rate for decrease 

in tissue glucose uptake ability, p3 is the insulin-

dependent increase in glucose uptake ability in tissue per 

unit of insulin concentration above the basal level and is 

measured in [ (µU/ml) min −2], n is the first order decay 

rate for insulin in blood and is measured in (1/min), h is 

the threshold value of glucose above which the pancreatic 

β−cells release insulin and is measured in (mg/dl), γ is the 

rate of the pancreatic β−cells release of insulin after the 

glucose injection with glucose concentration above the 

threshold and is measured in [(µU /ml min −2 (mg/dl) −1]. 

a represents time constant of the pump, t measured in 

(min) is the time interval after the glucose injection. The 

initial conditions for the system are; g(0) = g0,  v(0) = 0, 

i(0) = i0 and w(0) = 0 from [24]. Change of variables into 

𝒙𝟏,  𝒙𝟐,   𝒙𝟑,  𝒙𝟒; and (1) afterwards   

�̇�𝟏(𝒕) = −𝒑𝟏𝒙𝟏(𝒕) − 𝒙𝟏(𝒕)𝒙𝟐(𝒕) + 𝒑𝟏𝒈𝒃 

�̇�𝟐(𝒕) = −𝒑𝟐𝒙𝟐(𝒕) + 𝒑𝟑𝒙𝟑(𝒕) − 𝒑𝟑𝒊𝒃 

�̇�𝟑(𝒕) = 𝜸𝒕𝒙𝟏(𝒕) − 𝒏𝒙𝟑 (𝒕) + 𝒙𝟒(𝒕) − 𝜸𝒉𝒕 

�̇�𝟒(𝒕) = −
𝟏

𝒂
𝒙𝟒(𝒕) +

𝟏

𝒂
𝒖(𝒕) 

(2) 

The above 4th order nonlinear system has been 

linearized around equilibrium point (x0, u0) [24], becomes; 

�̇� =

[
 
 
 

 

−𝑝1 − 𝑥2 −𝑥1

0        −𝑝2

0   0
𝑝3    0

𝜸𝒕              0
0              0

 
−𝑛 1

0 −
1

𝑎]
 
 
 

𝑥 +

[
 
 
 
0
0
0
1

𝑎]
 
 
 

 u       (3) 

𝑦 = [1    0    0     0]𝑥  

where p1, p2, p3, 𝛾, n, h, 𝑔0  and 𝑖0  are the given model 

parameters. Substituting p1 = 0, p2 = 0.0081, p3 = 

0.00000401, i0 = 192, g0 = 337, 𝛾 = 0.0024, n = 0.23, h 

= 93, a = 2, 𝑔b= 99,  𝑖b =8 (3) become [24]. 

𝐴 = [

 0      − 859.6667      0        0
    0     − 0.0080       0        0

0.0024       0       − 0.2300    1
   0           0          0         − 0.5

]    𝐵 = [

0
0
0

0.5

]   (4) 

𝐶 = [1    0   0   0] 

Conditions for both controllability and observability 

were checked for the linearized model before designing 

PID and state feedback controllers and it was noted that 

system dynamics in the state space form given in (4) 

satisfy the conditions for both controllability and 

observability. 

III. PROPOSED CONTROLLER: LINEAR MODEL 

PREDICTIVE CONTROL 

In this paper a Linear Model Predicative Control 

(LMPC) has been derived from a linearized 

approximation of the full state glucose-insulin dynamic 

model. The linearized version of the nonlinear model is 

obtained as a result of the linearization of the extended 

nonlinear model described in [24] around an appropriate 

working point derived in (5) in state-space form.  MPCs a 

general approach that provides opportunity to develop 

rather complex but robust control techniques and 

algorithms for glycemic control in type ‘I’ diabetics. An 

MPC strategy consists of two basic ingredients; a solution 

to an optimization problem which is model based and the 

receding horizon principle, in which the future input 

sequence moves at each point of time while optimizing a 

cost function 𝐽(𝑥, 𝑢)  subjected to the constraints is 

calculated and out of whole sequence only the first 

control move is used for control purpose. The practice is 

reiterated for the next step, with subsequent translation of 

both prediction and control horizon. The future states and 

outputs can be predicated using different MPC algorithms 

applied for different models while addressing the diabetes 

problem. Multiple linear and non-linear glucose-insulin 

models have been discussed in [20]-[25] in both 

continuous and discrete domains.  
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The glucose-insulin dynamic system model 

represented in (1) can also be rewritten as: 

              �̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))                      (5) 

𝑦(𝑡) = 𝑔(𝑡) 

where x = [g, v, i, w] and f (...) is derived from the model 

equation in (1) reported in section III. The glucose insulin 

system is a critical system and must have some 

constraints in order to avoid unwanted situation while 

managing diabetes. I order to achieve this objective; the 

glucose insulin system will be made to have the following 

constraints in mind. 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥,     𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥         (6) 

where 𝑥𝑚𝑖𝑛 and  𝑥𝑚𝑎𝑥 are lower and upper limits for state 

𝑥1 (t),which represents plasma glucose concentration of 

the patient, while 𝑢𝑚𝑖𝑛  and 𝑢𝑚𝑎𝑥  represent lower and 

upper limits for the  control input 𝑢 , which represents 

insulin infusion rate. These are the constraints which keep 

glucose concentration in a safe limit providing insulin 

infusion in a safer way to avoid both under dosing and 

overdosing of insulin.  Overdosing of insulin can lead to 

hypoglycemia, so tackling hypoglycemic events are the 

focus of research community working on design of 

artificial pancreas. For deriving an MPC control law, to 

maintain system state 𝑥1(𝑔) as close to desired state r(t) 

as possible, following quadratic continuous time cost 

function was considered  

𝐽 = ||𝑥(𝑡𝑓) − 𝑟(𝑡𝑓)||
𝐻

2

+ ∫ [ ||𝑥(𝑡𝑓) − 𝑟(𝑡𝑓)||
𝑄(𝑡)

2𝑡𝑓

𝑡𝑜

 

+||𝑢(𝑡)||
𝑅(𝑡)

2
] 𝑑𝑡                         (7) 

where 𝑥1(t) is the glucose state that we want to regulate, 

r(t) is the anticipated reference for glucose level (between 

60 mg/dl and 126 mg/dl), H and Q(t) are real symmetric 

positive semi-definite n x n matrix while R(t) is a real 

symmetric positive definite m x m matrix. The elements 

of the matrix Q are selected to weight relative importance 

to 𝑥1(𝑡) which is the glucose concentration state. With 

linearized plant the performance measure leads to an easy 

implemented optimal controller [26]. MPC generally 

have some independent parameters like control horizon, 

prediction horizon, state and input constrain, output and 

input weights etc. With proper choice of these parameters 

desired results can be achieved. Keeping input insulin 

infusion in a safe limit, glucose levels can be regulated. 

The choice of constraints on both input and constraints 

makes the Linear MPC a better choice for glucose 

regulation in type ‘I’ diabetes. 

IV. NUMERICAL SIMULATION AND RESULTS  

We simulated the 4th order linearized model of 

glucose-insulin dynamic system of humans expressed in 

the state space representation in (4). Three different 

control techniques were applied namely PID control, 

State Feedback control and our proposed Linear MPC 

controller. The design of the PID controller was carried 

out by applying the root locus method at the mentioned 

operating points.  Gains Kp, Ki, and Kd   for PID controller 

are selected as [0.20791, 8.46229x10-5, 5.75336]. Results 

of PID controller are shown in Fig. 2. To make the 

comparison more meaningful we applied saturation 

function to limit input insulin infusion in case of both 

PID controller design and State Feedback controller. The 

state feedback controller is designed according to the pole 

locations mentioned in [26] and K = [-0.4, 4702.2 0.1 -

0.7]. Results of State Feedback controller are in Fig. 3. 

After applying both simplified linear control techniques, 

we applied our proposed Linear MPC with the constraints 

on its input 𝑢 and glucose level state 𝑥1(𝑔) . Fig. 4 shows 

Simulink model of the proposed Model Predictive 

Control strategy. Constraints on glucose state are evident 

from [7] that we should maintain plasma glucose 

concentration between 60mg/dl and 126mg/dl. Fig. 5 

show the results of the proposed Linear MPC and it can 

be seen from the graph that our proposed Linear MPC is 

tracking the desired reference of glucose without 

violating the lower and upper limit of the basal glucose 

concentration mentioned in [7] and Table I. Fig. 5 shows 

how the Linear MPC does not go beyond the upper 

allowable limit of glucose concentration even if we set 

reference for the controller and same can be observed in 

Fig. 6 where Linear MPC does not violates the lower 

limit of the basal glucose concentration. Fig. 5-7shows 

how the proposed Linear MPC is satisfying all constraints 

on that glucose state and the insulin infusion rate. By 

comparing the results of all control techniques and noting 

rise time, settling time, peak overshoot, undershoot and 

the system steady state error and lower and upper bonds 

on the glucose levels mentioned in section I and section 

III, it can be easily interpreted and concluded from Table 

II that the proposed Linear MPC keeps the glucose levels 

in allowable range (60 mg/dl and 126 mg/dl) while 

keeping proper check on input insulin infusion rate and 

constraints on the glucose states to avoid positive and 

negative deviation from the reference value of glucose 

levels, which makes linear constrained MPC a better 

choice for a better and tighter  glycemic regulation in 

patients with type ‘I’ diabetes. 

 

Figure 2. Plot of glucose level g(t) when only PID controller. 

 

Figure 3. State feedback response of g(t). 
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TABLE II. COMPARISON OF LINEAR MPC WITH SIMPLE LINEAR 

CONTROLLERS 

Control 

Strategy 

Max conver-

gence time 

Overshoot 

Undershoot 

  

SSE 

Constraints 

Satisfaction 

PID 

Controller 

    560s OS, US Yes No 

State 

Feedback 

     720s OS Yes No 

LMPC      95s OS No Yes 

 

Figure 4. Model predictive control simulink model.  

 

Figure 5. Linear MPC controller response of g(t). 

 

Figure 6. LMPC controller satisfying upper bond of the output 

constraints. 

 

 

Figure 7. LMPC controller satisfying lower bond of the output 

constraints. 

V. CONCLUSION 

This paper presents an adaptive control technique 

called Linear Model Predictive Control for achieving 

tighter glycemic regulation for type ‘I’ diabetic patients. 

The performance of the proposed techniques has been 

examined by its qualitative and quantitative comparison 

with conventional linear controllers like PID and State 

Feedback controller for linearized 4th order extended 

glucose-insulin dynamic model of T1D patient. The 

statistical results suggest that MPC is regulating blood 

glucose levels very well while considering constraints on 

both insulin infusion and glucose levels and outperforms 

other simplified linear control techniques and algorithms. 

The simulation results indicate the dominance of the 

proposed controller in terms of robustness and safety to 

avoid undesirable consequences of both hypoglycemia 

and hyperglycemia. 
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