
Abstract—This study investigates the impact of the MRI 

distortion that appears between 3D T1 Dixon Water-only 

images and both spoiled gradient echo and multi-echos T2 

weighted spin-echo images when sequentially acquired. 

Recent studies focusing on radiomic features locally 

computed on muscle heads or bone marrow segmentations 

require precise corrections of the bias field and the 

distortion. Our results suggest that classically used rigid 

registration are not optimal for such fine study and that 

deformable registration should be preferred to limit 

significant error in radiomic feature extraction. However, 

from our experiments on our data, no significant change in 

radiomic statistic is observed whatever segmentation 

correction approach was applied. This indicates that 

radiomic features are not sensitive to segmentation 

refinement when considering large 3D regions.  

Index Terms—radiomics, quantitative maps, registration, 

magnetic resonance imaging 

I. INTRODUCTION

Radiomic features extracted from medical images 

(MRI, CT, PET, …) enable advanced image-based tissue 

characterization and objective monitoring in longitudinal 

studies [1], [2]. Radiomics is a process that involves 

extracting and analyzing a large quantity of features from 

medical images [3]. Features extracted from longitudinal 

quantitative Magnetic Resonance Imaging (qMRI) data 

can convey information regarding fine evolution of 

tissues [4] after anatomical segmentations are ideally 

obtained automatically. While features need to be 

extracted from many different sequences, the 

segmentation is generally best being performed on a 

given contrast. Since the correction of MRI distortion is a 

well-known challenge in Magnetic Resonance (MR) 

image analysis [5], [6], which make feature extraction by 

superposing automatic segmentation obtained on one 

sequence on the other sequences questionable, our 

objective is to investigate the impact of such distortion in 

our study hence to find the most suitable registration 

framework [7], [8] minimizing contamination from 
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misclassified structure due to potential distortion in order 

to obtain the purest radiomic data best describing each 

compartment of interest. 

Our study involves the upper leg MR images of ultra-

marathoners and focuses on the quadriceps muscles 

segmentation which is a laborious task when performed 

either manually or automatically. This paper is organized 

as follow: In the next section, we will describe our data 

and preprocessing. Then the registration scheme will be 

detailed. The Section IV will describe the extracted 

radiomic features. Finally, we disclose and discuss our 

results.  

II. DATA

Our data was collected from 50 runners of the 

Mountain ultra-marathon (MUM) Tor Des Géants 2014 

(330km, 24.000 m of elevation gain) who volunteered to 

participate in the study which consisted of image 

acquisition and biological analysis at multiple time points 

during and after the race. Among the 50 runners, only 30 

finished the race and after data quality control, we 

conserved 20 finishers for our study.  

Therefore, our MRI data included 3D T1 Dixon Water 

only (2-points Dixon, 160 coronal slices) MR images 

collected from these 20 finishers then corrected using N4 

bias field correction [9], as well as quantitative maps [10] 

of T2* derived from 3D spoiled gradient echo sequences 

(3DGre) and of T2 derived from 2D multi-echos T2 

weighted spin-echo sequences. It is important note that 

based on the physical properties of MR acquisition, the 

morphological structures perfectly represented in T1 

Dixon sequences are  deformed intrinsically in multi-

echos T2 spin-echo ones. In addition, the different 

sequences have different resolutions and different field of 

views. A semi-automatic segmentation of the four 

quadriceps muscle heads was performed on the T1 Dixon 

Water-only (T1w) images [11] on both legs. Example of 

quadriceps muscles segmentation can be found in Fig. 1. 

Below, we will analyze radiomic change on 8 muscle 

heads (4 on each leg) plus one (denoted as “All”, which 

represents all quadriceps muscle heads together) 

corresponding to the grouping of all muscles when the 
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segmentations are coarsely then finely registered on 

quantitative maps.  

 

Figure 1. T1w and segmentations of the 4 quadriceps muscle heads: 

VL - Vastus Lateralis, RF - Rectus Femoris, VM - Vastus Medialis, VI - 

Vastus Intermedius. 

III. IMAGE REGISTRATION 

Our registration pipeline is described in Fig. 2 where 

no intensity change is performed on data from which 

radiomic features will be extracted. Here we study rigid 

then deformable B-spline registrations from T1w images 

to T2* and T2 maps. During registration process, the 

mutual information was maximized using an adaptive 

stochastic gradient ascent with a 4-scales multi-resolution 

scheme. The use of mutual information is mandatory due 

to the important permutation of intensity range between 

T1w and the quantitative maps [8]. The mutual 

information can be defined with the following formula: 

𝑀𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 

where 𝐻(𝐴) and 𝐻(𝐵) are margina entropies of images A 

and B respectively and 𝐻(𝐴, 𝐵) is their joint entropy. The 

entropies are defined as: 

 

𝐻(𝐴) = − ∫ 𝑝𝐴(𝑎) log 𝑝𝐴(𝑎)𝑑𝑎 

𝐻(𝐵) = − ∫ 𝑝𝐵(𝑏) log 𝑝𝐵(𝑏)𝑑𝑏 

𝐻(𝐴, 𝐵) = − ∫ 𝑝𝐴𝐵(𝑎, 𝑏) log 𝑝𝐴𝐵(𝑎, 𝑏)𝑑𝑎𝑑𝑏 

where 𝑝𝐴 , 𝑝𝐵  and 𝑝𝐴𝐵  are respectively marginal 

probability density functions for A and for B and their 

joint probability density function. Here, these functions 

were constructed using the method of Mattes et al. [12]: 

probability density distribution were estimated using 

Parzen windowing. The larger the MI, the better aligned 

the two images. 

The 4-scales multi-resolution scheme ensures a robust 

convergence of gradient ascent on our data for both rigid 

and deformable transformation. The rigid registration 

allows translation and rotation while the deformable 

registration allows local changes modeled by a Free-Form 

Deformation (FFD) based on B-spline functions. Let the 

image volume be denoted as Ω =  {(𝑥, 𝑦, 𝑧) | 0 ≤ 𝑥 <
𝑋, 0 ≤ 𝑦 < 𝑌, 0 ≤ 𝑧 < 𝑍}. The basic idea of FFD is to 

manipulate a mesh 𝜙  of 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧  control points 

𝜙𝑖,𝑗,𝑘  of Ω . The FFD can be written as the 3D-tensor 

product of the familiar 1-D cubic B-splines [13]: 

𝑇𝑙𝑜𝑐𝑎𝑙(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝐵𝑙(𝑢)𝐵𝑚(𝑢)𝐵𝑛(𝑢)𝜙𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0

 

where 𝑖 =  ⌊𝑥/𝑛𝑥⌋, j=  ⌊𝑦/𝑛𝑦⌋, 𝑘 =  ⌊𝑧/𝑛𝑧⌋, 𝑢 = 𝑥/𝑛𝑥 −

⌊𝑥/𝑛𝑥⌋, 𝑣 = 𝑦/𝑛𝑦 − ⌊𝑦/𝑛𝑦⌋, 𝑤 = 𝑧/𝑛𝑧 − ⌊𝑧/𝑛𝑧⌋ and 𝐵𝑙 

represents the 𝑙th basis function of B-spline: 

𝐵0(𝑢) = (1 − 𝑢)3 6⁄  

𝐵1(𝑢) = (3𝑢3 − 6𝑢2 + 4) 6⁄  

𝐵2(𝑢) = (−3𝑢3 + 3𝑢2 + 3𝑢 +  1) 6⁄  

𝐵3(𝑢) = 𝑢3 ∕ 6 

 

 

Figure 2. Proposed registration pipeline to study the effect of registration method on radiomic features. Note that the N4 bias field correction of the 

T1w was performed beforehand. 

 

VL

RF

VM

VI
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In our application, one control point was set every 25 

voxels so 𝑛𝑥 = ⌈𝑋/25⌉ ,  𝑛𝑥 = ⌈𝑌/25⌉ and  𝑛𝑧 = ⌈𝑍/25⌉. 
This subsampling allows obtaining not too small and 

unrealistic deformations in accordance with the muscles’ 

shape and MRI distortion. 

After the registration process, the obtained deformation 

fields were applied to the semi-automatic segmentations 

using a k-nearest neighbor interpolator to preserve integer 

values.  

One can note that deforming the segmentation only 

does not affect intensity values of the MRI quantitative 

maps from which radiomic features will be extracted. 

IV. RADIOMIC FEATURES EXTRACTION 

Radiomic features were extracted from each 

segmented quantitative maps T2 and T2*, including 

distribution and texture features. Features were computed 

on the total 3D volumes using the toolbox and 

recommendations of Vallières et al. [3]. Each slice were 

quantitated on 32 gray levels using Lloyd-Max 

quantization algorithm [14], [15] to define decision 

thresholds in the volume. Next, four matrices were built:  

• GLCM (Gray-level co-occurrence matrix): 

represents the number of times the combination of 

2 different gray levels occurs in two voxels next to 

each other, 

• GLRLM (Gray-level run length matrix): quantifies 

the length, in number of consecutive voxels, of a 

gray level in the considered volume 

• GLSZM (Gray-level size zone matrix): quantifies 

gray level zones in an image. Unlike GLCM and 

GLRLM, this matrix is rotation invariant, 

• NGTDM (Neighborhood gray-tone difference 

matrix): analyzes the difference between the gray 

level of a voxel and the average gray level of its 

neighbors. 

The four matrices were constructed using the 26-voxel 

connectivity and in 13 directions of 3D space (the 13 are 

accumulated on each matrix). Overall, from each MRI 

quantitative map, 55 distributions and texture features 

were extracted for each of 9 volumes (8 muscle heads 

plus one for the entire muscle volume) as: mean, variance, 

entropy, energy, correlation, etc. (reader can refer to [9] 

for the complete listing). 

It is important to note that most of such features are 

moment of the matrices elements leading to average. As 

the matrices are computed in 3D on each whole muscle 

head volume, changes at the boundaries of the 

segmentation will involve few pixels and thus we can 

expect that small to no change would be observed on 

radiomic features. 

Finally, the 55 radiomic features were extracted using 

unregistered and registered segmentations on each muscle 

head. We then compared radiomic values obtained with 

both registration schemes using the Wilcoxon signed-

rank test since normal distribution condition is not met 

here and since we have only 20 subjects in our study. The 

segmentations themselves were also compared with each 

other using DICE scores in order to assess their similarity 

(a DICE score of 1.0 means that the two compared 

segmentations are identical). Finally, mutual information 

values between T1w and quantitative maps before and 

after registrations were used to assess the alignment 

quality of MRIs.  

V. IMPLEMENTATION 

The registration, DICE and mutual information 

calculations, feature extraction and comparison were 

programmed using elastix [16], C++/ITK [17], MATLAB 

[3] and R [18] respectively.  

VI. RESULTS AND DISCUSSION 

Visual assessment of distortion before and after 

registration can be examined on Fig. 3. These 

observations should be made discretely as T2 and T2* are 

noisy and do not highlight the same information as T1w. 

Without registration, it has to be kept in mind that T2* 

map is less affected by distortion artefact than the one of 

T2. In average, both registration approaches improved the 

matching with the T1w image, as confirmed by the 

improvement of the Mutual Information (MI) values of 

Table I. 

 

Figure 3. T2 and T2* maps (a) and T1w image (on the right) of the left leg of a runner. By superposing T1w image on the quantitative maps, we can 

observe the original distortions between T1w and T2 maps (b), distortions after rigid registration (c) and after deformable registration (d). The arrows 

guides to the visually observable distortions. The distortions between T1w and T2* map are not as visible. T2 and T2* maps are displayed in colors 

for better visualization. 
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Only for 3 runners rigid transform failed to improved 

MI using T2 and for 8 runners (40%) considering T2* 

maps (bold values in Table I). We note that deformable 

registration based on B-spline always provided highest 

mutual information value, implicating that it was robust 

and it improved image alignment (except for MAV, 

where registration did not converge as expected but still 

produced a visually satisfying registration, as show in Fig. 

4). The changes in segmentation overlap with and without 

registration were also non-negligible considering the 

DICE scores in the Table II.  

 

Figure 4. An axial slice T2* maps and T1w image (on the right) of the 

left leg of the runner MAV, and the resulted visualization by 

superposing T1w on T2* before registration (a), after a rigid registration 

(b) and after a deformable registration (c). 

TABLE I.  MUTUAL INFORMATION VALUES BETWEEN T1W AND 

UNREGISTERED/REGISTERED (RIGID OR B-SPLINE) QUANTITATIVE 

MAPS (T2 AND T2*) FOR ALL STUDIED RUNNERS. BOLD VALUES ARE 

SPECIAL CASE WHERE REGISTRATION DID NOT IMPROVE IMAGE 

SIMILARITY  

Name 

T2 

none 

T2 

rigid 

T2 

BSpline 

T2* 

none 

T2* 

Rigid 

T2* 

BSpline 

ALB 0,720 0,739 0,774 0,766 0,746 0,775 

ALF 0,647 0,565 0,661 0,713 0,701 0,720 

ARS 0,795 0,832 0,875 0,756 0,770 0,814 

BRG 0,729 0,770 0,782 0,772 0,779 0,804 

CHS 0,647 0,619 0,731 0,708 0,733 0,789 

CLB 0,713 0,709 0,729 0,783 0,754 0,803 

EMS 0,665 0,730 0,774 0,750 0,777 0,821 

ERT 0,752 0,830 0,849 0,798 0,809 0,834 

FAP 0,711 0,751 0,772 0,776 0,787 0,820 

MAC 0,621 0,710 0,740 0,704 0,703 0,727 

MAJ 0,705 0,794 0,827 0,781 0,798 0,831 

MAP 0,609 0,626 0,656 0,777 0,756 0,777 

MAV 0,589 0,652 0,711 0,743 0,679 0,694 

OUK 0,725 0,789 0,806 0,793 0,793 0,816 

PAC 0,679 0,722 0,733 0,753 0,758 0,781 

PIS 0,736 0,791 0,851 0,773 0,790 0,827 

ROE 0,711 0,805 0,830 0,808 0,833 0,864 

THB 0,732 0,827 0,853 0,808 0,835 0,873 

VAH 0,598 0,681 0,743 0,704 0,730 0,781 

YAG 0,756 0,820 0,837 0,780 0,779 0,810 

Mean 0,692 0,738 0,777 0,762 0,766 0,798 

stdev 0,058 0,078 0,064 0,033 0,042 0,045 

TABLE II.  DICE SCORES COMPUTED AGAINST UNREGISTERED AND 

REGISTERED SEGMENTATIONS FOR ALL STUDIED RUNNERS 

Name 

T2 

none 

T2 

rigid 

T2 

BSpline 

T2* 

Rigid 

T2* 

BSpline 

ALB 1 0,931 0,932 0,969 0,953 

ALF 1 0,837 0,904 0,978 0,969 

ARS 1 0,959 0,946 0,977 0,957 

BRG 1 0,958 0,957 0,980 0,970 

CHS 1 0,781 0,832 0,938 0,930 

CLB 1 0,960 0,956 0,986 0,970 

EMS 1 0,936 0,933 0,956 0,947 

ERT 1 0,947 0,944 0,974 0,962 

FAP 1 0,943 0,941 0,968 0,963 

MAC 1 0,893 0,886 0,961 0,949 

MAJ 1 0,946 0,942 0,975 0,962 

MAP 1 0,929 0,916 0,964 0,958 

MAV 1 0,799 0,805 0,981 0,974 

OUK 1 0,949 0,945 0,977 0,969 

PAC 1 0,950 0,948 0,974 0,961 

PIS 1 0,924 0,914 0,975 0,960 

ROE 1 0,933 0,936 0,974 0,963 

THB 1 0,952 0,948 0,964 0,957 

VAH 1 0,892 0,889 0,942 0,933 

YAG 1 0,953 0,952 0,973 0,961 

Mean 1 0,919 0,921 0,969 0,958 

stdev 0 0,0529 0,0410 0,0123 0,0116 

Despite such changes in segmentations, most of the 

radiomic features computed on T2 and T2* maps using 

the registered and unregistered segmentations revealed 

almost no statistically significant change (Fig. 5) with 

some significant results for the left VL (6/55 for T2* and 

3/55 for T2). Considering the noisiness of the quantitative 

maps, especially at the border that separate muscles and 

fat/skin, and the fact that most of the features with 

significant changes (min, variance, intensity range) are 

sensitive to noise, we can consider overlooking these 

results and can conclude that reducing the distortion 

between T1w and T2 and T2* do not have any impact on 

the radiomics and the segmentation quality (in absence of 

major segmentation errors) does not influent the radiomic 

features in the quadriceps. 

Nevertheless, the entire muscle volume in T2* maps 

contains, in average, 200.000 voxels and this number is at 

80.000 in T2 maps. Meanwhile, the MRI distortion 

usually involves a small part at the boundary of muscle 

volume. Also, the 55 radiomic features were computed in 

a 3D manner using the whole set of pixels of each muscle 

head volume and were averaged when necessary. From 

our observation, such features are not suitable to highlight 

small variations when volume’s boundaries evolve as it 

can be intuitively explained while looking at the 

definition of radiomic feature calculation: noise, 

resolution, binning and averaging do not allow describing 

tissues variation at region boundaries or small changes in 

tissues.  
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Figure 5. P values of statistical tests comparing the radiomic features extracted from each muscle volumes on T2* and T2 map using segmentations 

of T1w before and after a deformable registration. A P value inferior to .05 indicates significant difference. Abbreviations: VL - Vastus Lateralis, RF - 

Rectus Femoris, VM - Vastus Medialis, VI - Vastus Intermedius, r – right, l – left legs. 

 

VII. CONC LUSION 

We studied the impact of two different intra 

registration approaches to reduce the MRI distortion 

between T1w and T2 and T2* quantitative maps for 

extraction of local individual quadriceps radiomic 

features from quantitative maps. 

On the 20 studied cases, our results suggest that 

considering robustness and segmentation mask alignment 

tasks, registration must be performed in a deformable 

way. However, when focusing on radiomic features 

computed on each quadriceps volumes in a 3D manner, 

the correction of the distortion does not yield in any 

statistically significant modifications. 
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