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Abstract—We propose a surgical navigation system aimed at 

conducting Depth–Depth Matching (DDM) between virtual 

and real organ images. The depth image of virtual organs 

modeled using stereolithography data derived from the Z-

buffer of a GPU. In contrast, the depth image of real organs 

is obtained through an arbitrary depth camera. Therefore, 

in DDM, we need only non-combinatorial L subtractions 

and additions between virtual and real 2D depth images 

with pixel number of L, which is approximately 100,000. 

The most popular Iterative Closest Point (ICP) algorithm in 

the point cloud library consumes a considerable amount of 

time for checking the coincidence of two kinds of point 

clouds of whole organs. This could be because (1) the ICP 

needs combinatorial M × N calculation of the Euclidean 

distances of 3D cloud points (where M and N are usually 

near 100,000) and (2) considering that a real organ is 

obstructed by the patient’s body, the directions from which 

it is captured by a camera are restricted to the top view or 

near a shadowless lamp.  

 

Index Terms—Digital Imaging and Communications in 

Medicine (DICOM), surgical navigation, depth–depth 

matching, Z-buffer, Stereolithography (STL), Cavitron 

Ultrasonic Surgical Aspirator (CUSA) scalpel 

 

I. INTRODUCTION 

Since 2013, we have been developing a system for 

liver surgical navigation. Surgical navigation has been 

gaining considerable interest in the fields of orthopedic 

surgery, plastic surgery, forming surgery, neurosurgery, 

kidney surgery, liver surgery, and so on (Table I). 

TABLE I.  TYPES OF SURGICAL NAVIGATIONS 

Surgery type Deformability 
Position 

precision 

Orientation 

precision 

Orthopedic 

surgery 
Negligible Negligible Negligible 

Plastic surgery None None None 

Neurosurgery Partially A few A few 

Kidney surgery A few Large Large 

Liver surgery Large Large Large 

 

First, many studies have reported on navigation results 

in orthopedic surgery [1]. In comparison, surgical 
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navigation for plastic surgery can easily be dealt with 

because its main target is bone, the structure and 

kinematics of which are geometrically fixed. Therefore, 

construction of a navigation system is relatively easy [2]. 

Finally, neuro-navigation is also stable as a brain is 

completely covered by the skull even though the brain 

itself is slightly deformed. The neuro-navigation is 

mostly a developing field of study [3], and consequently, 

some commercialized surgical navigation systems, such 

as the StealthStation™ (provided by the Medtronic Co.), 

have been already developed. This system has an intuitive 

interface, improved patient-registration software, and 

advanced visualization to navigate neurosurgery 

procedures. 

However, such a type of brain navigation currently 

faces two serious problems: 

(1) The coincidences between real and virtual 

organs 

(2) The identification of movement and deformation 

of a real organ 

In this study, we focused on problem (1). Section II 

describes a real organ and its virtual counterpart. In 

addition, we illustrate how to obtain a virtual organ and 

then build its replica in reality. Then, in Section III, we 

briefly overview the history of related research, including 

a 3D stereo [4] and Simultaneous Localization and 

Mapping (SLAM) [5]-[15]. In particular, we focus on two 

modern methods: Iterative Closest Point (ICP) in the 

Point Cloud Library (PCL) [16]-[24] and our Depth–

Depth Matching (DDM). In Section IV, we explain DDM 

theoretically and experimentally [25]-[35]. Finally, 

Section V briefly summarizes our research. 

II. VIRTUAL AND REAL ORGANS USED IN THIS 

RESEARCH  

By using the following algorithms, we initially 

captured the patient’s liver, its blood vessels, and tumors 

through MRI- or CT-scan-based Digital Imaging and 

Communication in Medicine (DICOM) data. Then, we 

converted volumes of the liver, its blood vessels, and 

tumors into several STL polyhedrons by using a 3D slicer 

(Slicer), as shown in Fig. 1. This software is an open-

source software package for image analysis [7]-[8] and 

scientific visualization. The STL is employed rapidly 

calculate a depth image by using the GPU’s Z-buffer and 
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to maintain the visual quality. Based on the STL data, we 

then constructed a plastic replica of the real liver by using 

a 3D printer (Fig. 2). 

 

 

Figure 1. Liver DICOM data; (b) whole liver, arteries, veins, and 

portal vein STL; and (c) scalpel CUSA (Source: Noborio [36] 

(2016)). 

 

 

Figure 2. Vertical scale of liver 13cm, horizontal scale of liver 25cm. 

Upper: STL-formatted polyhedron liver. Lower: its 3D-printed 

liver replica (Source: Koeda [15] (2019)). 

III. BRIEF HISTORY OF REPLICATING A REAL ORGAN 

BASED ON ITS VIRTUAL COUNTERPART  

In almost all the navigators, people use the 3D 

mechanical or 2D nonmechanical probe with ultrasonic 

sensors. However, owing to the low image resolution of 

the ultrasonic sensor, we cannot detect the orientation, 

position, and shape of a real liver to precisely navigate it 

during surgery. Therefore, surgeons can capture the 

motions of translation and rotation of a real liver and its 

deformation by using the stereo vision of a 3D camera 

with real markers. However, we could locate any 

artificial markers on a real liver because of some damages 

to the liver due to surgery (Fig. 3).  

 

Figure 3.  (a) Pig liver captured by MRI; (b) STL polyhedron 

converted from DICOM of pig liver. (c) Many active landmarks 

on a pig liver. (d) Scraper with many landmarks during the 

surgery of the pig. This experiment was conducted in Kobe 

Medical Device Development Center (MEDDEC). 

Therefore, we selected the SLAM technique to 

precisely identify the orientation, position, and shape of 

the real liver by using not real markers but artificially 

selected markers [9]-[11]. The SLAM technique 

identifies the surrounding environment’s shape and 

estimates its orientation and position according to the 

shape data. In our system, we used ORB-SLAM2 [12], 

which is partially modified, as the SLAM library, in 

which three threads of local mapping, loop closing, and 

(a) 

(b) 

(c) 

(d) 
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tracking run in parallel. In the tracking thread, the 

orientation and position of the camera is estimated by 

tracking the image features of oriented FAST and rotated 

BRIEF (ORB) [13] in the input videos. The positions of a 

global map and camera are displayed in the local 

mapping thread. The loop closing thread eliminates the 

accumulation of the camera position and orientation 

error. However, during some surgeries, we could not 

sufficiently test the precisions of the translation and 

orientation movements of the organ [14] (Fig. 4).  

  

Figure 4. (a) Passive landmarks selected by SLAM on the real brain. 

(b) A real liver colored by red is traced with respect to its virtual 

liver colored in pink by using movements of passive landmarks 

(Source: Koeda [15] (2019)). 

IV. COMPARISON BETWEEN DDM AND ICP 

In this study, we developed a new liver surgery 

navigation system based on the key concept DDM of 

virtual and real liver images (Fig. 5). In general, in 

surgical navigation, most of the liver (organ) is covered 

by the patient's body, and only its narrow, open surgical 

area gradually changes. In this study, we use the shape of 

the liver incision, which was photographed in one 

direction from a shadowless lamp and its surroundings, as 

a landmark for tracking. The change in the shape of the 

incision at each sampling time was used as a landmark 

for the virtual liver (organ) to follow the actual liver 

(organ). This is the idea of DDM of the virtual depth 

image and the real depth image of the surgical aperture. 

In succession, in order to match this virtual liver image 

with the real liver image, we search for the orientation 

and position of the virtual liver in 6-DOF (3 parallel and 

3 rotational components) space of 3D Euclidean 

coordinates. In this search, the DDT match is checked in 

a huge number of neighboring directions to move the 

virtual liver. The depth image of the virtual liver modeled 

with STL data is derived from the GPU's Z-buffer. In 

contrast, the depth image of the real liver is taken by an 

arbitrary depth camera. Therefore, our DDM technique 

requires only K × L subtraction between the virtual depth 

and the real depth in K × L image pixels (where K and L 

are chosen for any depth camera (Fig. 6). Both values are 

usually close to 1000). 

 

 

Figure 5. By minimizing the sum of square differences between real 

and virtual depths in all the pixels, we are seeking for 

overlapping position and orientation between real and virtual 

livers. Uppers: No-obstruction case. Bottoms: Obstruction case. 

 

Figure 6. DDM in 3D translation movement. (Bottom) DDM in 3D 

orientation movement. 

This computation is relatively faster than using the ICP 

algorithm, which is the most popular in PCL for checking 

the agreement between two different point clouds of all 

objects. ICP is relatively time-consuming because it 

requires the computation of M × N combinations of 3D 

Euclidean distances (M and N are usually close to 

100,000; Fig. 7). 2D depth addition and subtraction is 

relatively faster than the Euclidean distance computation 

of 3D cloud points (Table II). 

 

(a) 

(b) 
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TABLE II.  COMPARISON BETWEEN DDM AND ICP 

 DDM ICP 

View area 
2D part based on 

occlusion 
3D space 

Number of 

calculations 

Sequential at each 

pixel 

Combination of 

points in two crowds 

Calculation 

method 
Subtraction 

Multiplication for 

Euclidean distance  

Number of 

cameras  
One  Multiple 

 

 

Figure 7. Upper: Matching between two crowds based on the 

combinational shortest Euclidean distance calculation is very 

hard because the number of crowd points is too large. Bottom: 

Correspondence between two crowds becomes failure because 

the number of crowd points is too small. 

V. DDM TECHNIQUE AND ITS APPLICATIONS 

Our concept of DDM has been explained in our 

previous study [25]. The main benefit of DDM is to 

identify translational and orientational movements by 

using a specified organ shape. Thus, the cutting shape of 

an organ or its tumor and blood vessels by a scalpel can 

easily be achieved by using DDM. 

Before using DDM, we should adjust the initialization 

such that virtual- and real-depth images coincide with 

each other by using a visual initial identification tool. By 

using the tool, we can precisely overlap a virtual organ 

with its real counterpart by watching pixel colors in the 

depth image (Fig. 8). For each pixel, we can identify the 

difference between virtual and real depths [26].  

Many studies have used several kinds of steepest 

descendent algorithms for selecting the best neighbor 

position/orientation to move [27], [28] (Fig. 9). We 

propose a steepest descendent algorithm to select 

neighbors, whose numbers are defined by six DOF with 

1–3 neighbors and 2 positive- and negative-direction 

candidates or the presence of 36−1, 56−1, and 76−1 

candidates around the present candidate (Fig. 10). Finally, 

as Six DOF consist of three translational degrees and 

three rotational degrees, our algorithm is designed for 

selecting the best translational neighbor point from one 

3D space and independently selecting the best orientation 

neighbor point from the other 3D space [27]-[28] (Fig. 

11). 

 

 

 

Figure 8. By using the color image, we can precisely overlap a virtual 

organ with its real organ by changing from green and red to blue 

via yellow (Source: Noborio [26] (2015)). 

 

Figure 9. Flowchart of our position and orientation registration method 

based on digital neighbours (Source: Noborio [28] (2014)).
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Figure 10. The least descendent algorithm always selects the best 

neighbors of the present points (=position/orientation) by using 

the evaluation value. (a), (b), (c), the upper panels show a 1 DOF 

search space with distances of 1, 2, and 3, respectively. The 

bottom panels show 6 DOF search space with distances of 1, 2, 

and 3, respectively (Source: Watanabe [28] (2015)). 

 

Figure 11. The least descendent algorithm always selects the best points 

neighboring the present point by using the evaluation value. This 

figure shows three translational DOF and three rotational DOF 

search spaces, with distance of 1 (Source: Watanabe [28] (2015)). 

Simultaneously, images are selected as the minimum, 

median, or average values in their distribution. In 

addition, the number of images, M, is simultaneously 

changed to 10, 50, and 100, and the number of pixels, N, 

is selected randomly. As a result, when using the 

algorithm with 26 (=33-1) or 728 (=93-1) neighbors, the 

median-image-average-pixel type of the DDM algorithms 

is better than that of the others for all the combinations of 

M and N with respect to speed and accuracy. In particular, 

the combinations of (M, N) = (10,100) and (50,10) in a 

system with 26 and 726 neighbors, respectively, are the 

best for achieving the optimal accuracy [27], [28] (Fig. 

12). 

Further, we attempted to achieve as many experimental 

results as possible based on the most commonly used 

depth cameras, which are Kinect v1 and v2. The depth 

sensor in Kinect v1 uses the “Light Coding” method that 

reads the emitted infrared (IR) patterns and obtains depth 

information from the pattern distortion. For this reason, 

the depth sensor was divided into an IR projector that 

emits an IR pattern (left) and an IR camera that reads the 

pattern (right). A color camera was mounted between the 

depth sensors [29]. 

 

Figure 12. Our algorithm randomly selects a set of N number of pixels 

in each image and then evaluates the average, median, or 

minimum of difference distribution between real and virtual 

depths. Furthermore, we select the average, median, or minimum 

of evaluation values in M images. These two randomizations 

escape from local minima of 6D motion space in our 2D DDM 

(Source: Watanabe [28] (2015)). 

The depth sensor of Kinect v2 employs the “ToF 

(Time of Flight)” method, which obtains the depth 

information since the emitted IR light is reflected and 

returned. The depth sensor, which is not visible from the 

outside, is equipped with an IR camera (left) and a 

projector (right) that emits pulse-modulated IR light next 

to the color camera [30].  

Presently, we are testing the performance for 

developing depth sensor, RealSense D435, based on 

depth sensor, RealSense R300, which were broken down 

well. The Intel RealSense Depth Camera D400 series is a 

stereo vision depth camera that can measure depth. 

Equipped with two depth sensors, an RGB sensor, and an 

IR projector, it operates with a USB power supply. The 

D435 used in this study has a global shutter and a wide 

viewing angle, providing high-resolution depth 

information when a moving object must be measured or 

when the device itself moves. It also minimizes blind 

spots and covers a larger area than the previous versions. 

In a real open surgery, an organ is always obstructed 

by a patient’s body. Therefore, only a part of the organ 

can be captured by the sensor. For this reason, a real 

organ should be followed by its virtual organ via the part 

of surface. In general, when a surgeon cuts an organ, a 

complicated shape is achieved. With the support of the 

complicated concave shape, the quality following a 

virtual organ with its real one increases. Therefore, even 

if the open part is very narrow, the quality of following 

improves in our navigation system [31]-[33] (Fig. 13). 

In our proposed system, we used the steepest 

descendent algorithm based on DDM change in the 

digitalized 6D space defined by three translational DOF 

and three rotational DOF. Next, in order not to enter into 

a local minimum, we use the simulated annealing 

algorithm [34].  

However, recently, the digitalized 6D potential field 

was determined to reach the global minimum without any 

local minima in a wider area [35]. Owing to this global 

property, the steepest descendent algorithm always 

selects the coincidence point between real and virtual 
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organs with respect to three-DOF position and three-DOF 

orientation. 

 

Figure 13. Upper: (a), (b), (c) Strobe shot of actual liver surgery video. 

Bottom: Occlusion situation. (a) The whole experimental 

apparatus and (b) the figure which shows the experimental 

apparatus from the side. The height from the highest part of the 

liver to the occlusion is 0.02 m. (c) A view of the experimental 

apparatus from directly above. The occlusion was made from a 

black plastic board cut out from a 0.1 m or 0.09 m diameter circle, 

and the initial position of the depth images of the incised real and 

virtual livers was adjusted using the rectangle inscribed in the 

occlusion circle (Source: Asano [33] (2020)). 

Moreover, the liver is a rheology object with nonlinear 

viscous and elastic properties. Therefore, it is flexibly 

deformed and its position/orientation is quickly changed 

during surgery [37]. Dealing with such a rheological 

object is difficult, and requires the use of computer 

graphics in virtual reality, mixed reality, and augmented 

reality. 

As mentioned earlier, we recently determined that the 

digital search function for the superposition point is 

globally unimodal (Fig. 14). Accordingly, we constructed 

an intra-operative surgery navigator that accurately 

superimposes the virtual and real organs not only with 

respect to position/posture but also its shape. 

 

Figure 14. Digital potential field defined by (a) XY rotational DOF, (b) 

XZ rotational DOF, and (c) YZ rotational DOF. All field shapes 

are simply concave whose bottom is the coincident point, where 

the real organ overlaps its virtual counterpart (Source: Numata 

[35] (2019)). 

As shown in Fig. 14, the steepest descent method 

based on DDM is relatively stable in position/orientation 

identification. In our surgical navigation, the sampling 

time, which consists of sensing (e.g., 90 fps for 

RealSense D435), matching, and investing, is too small; 

therefore, the shape deformation is also very small. For 

these reasons, deformation matching according to DDM 

can be achieved after that. The investigation may 

sometimes be conducted using a multicore GPU (Fig. 15). 

 

Figure 15. Organ deformation matching by DDM after organ 

position/orientation matching was finished by DDM. 

 

 

 

Figure 16. Overall surgical navigation system with a scraper, which is 

calibrated by many precise artificial landmarks captured by 

Micron Tracker 3 (Source: Doi [38] (2015)). 
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Finally, to design an organ surgical navigation system, 

we calibrated the virtual and real livers as well as the 

virtual and real Cavitron Ultrasonic Surgical Aspirator 

(CUSA) scalpels (Fig. 16). In the first stage, we used 

MicronTracker 3 provided by ClaroNav Co. to identify 

several special artificial markers [38]-[40]. However, as 

the marker tracing vision system is extremely expensive, 

in the second stage of our experiments, we used the 

ArUco Markers instead [41], [42]. 

VI. CONCLUSION 

In this paper, we provide a brief history of the organ 

orientation, position, and shape matching. Since its 

introduction in 1833, the 3D stereo vision structure has 

been installed with two cameras to obtain two views by 

using only one camera and one motion. Because the 

images and motions have a few errors, we used some 

digital filter to cancel such noises.  

By using this mathematical technique, we acquire 

SLAM (Simultaneous Localization and Mapping) since 

1986. To overlap many point clouds captured from many 

cameras, researchers used ICP of the PCM. However, as 

the number of cloud points is extensive, combinatorial 

calculation was employed to minimize the sum of 

Euclidean distances between two cloud points. In 

addition, a target object, such as an organ, cannot be 

omnidirectionally captured from multiple cameras during 

a surgery. 

Therefore, in 2014, the DDM approach was proposed 

to match a real organ with its virtual organ. This approach 

is based on one view and does not have any combination 

and multiplication calculation. In this paper, we explained 

many algorithms and experimental extensions of the 

DDM approach. Finally, we briefly introduced our DDM-

based surgical navigation system. 

VII. FUTURE WORKS 

In our algorithm, which is based on depth matching 

and steep descendent method, a part of the object shape is 

used as a landmark. These landmarks are used to 

accurately identify the translational and rotational motion 

of the organ. Typically, in surgical navigation, the cut 

shape of an organ is used as this landmark. Since artificial 

landmarks would be a burden to the organ after surgery, 

we believe their use is impractical. 

In addition, the mathematics of the camera is based on 

linear algebra, so it is not affected by errors in the internal 

and external parameters of the camera except for random 

noise. This is because even in the presence of those errors, 

the zoom in and out will always be nearly linear, and the 

shape properties useful for matching will be preserved. 

Therefore, the algorithm does not necessarily require 

strict camera calibration. Therefore, the algorithm can be 

applied directly to depth images from pre-calibrated 

cameras, such as commercial depth/RGB cameras from 

Microsoft, Intel, etc. (Azure Kinect DK, RealSense L515, 

D455, D415, ZED 2, etc.). The depth image can be 

applied as is. The depth image is captured using the times 

of fright (ToF) or the active stereo principle, but it is not 

bound by it. 

Furthermore, if our algorithm is fast enough, for 

example, if it supports multiple cores of GPGPU, the 

sampling time of our algorithm will be within the 

sampling time of commercial depth/RGB cameras. In 

such a case, the deformation of the landmarks cannot be 

neglected because a part of the object shape is slightly 

deformed. Therefore, the identification of translational 

and rotational motions of organs during surgery is stable. 

In future, these characteristic properties are ascertained 

by several experiments based on different commercial 

depth/RGB cameras from Microsoft, Intel, etc. (Azure 

Kinect DK, RealSense L515, D455, D415, ZED 2, etc.). 
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