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Abstract—Depression, different from usual mood 

fluctuations and short-lived emotional responses to 

challenges in everyday life, is a common illness worldwide, 

with more than 300 million people affected. Although there 

are known, effective treatments for depression, fewer than 

half of those affected in the world (in many countries, fewer 

than 10%) receive such treatments. The diagnose of 

depression is usually subject to doctors due to the lack of 

biomarkers of depression. Electroencephalogram (EEG) is 

an easy-to-use, cost-effective technique that records electrical 

activity in brain. In this study, 64-channel EEG data was 

collected from 213 subjects including 71 health controls and 

142 depression patients. 13 different features were extracted 

from EEG signals from all 7 sub-bands of all channels. 3 

different feature selection models were used to find the subset 

of features that best represents the characteristics of EEG 

signal and 6 machine learning models were applied on all 

subsets of features to find the model that gained the highest 

accuracy and recall on depression detection. 

   
Index Terms—depression, MDD, EEG, machine learning 

 

I. INTRODUCTION 

Depression is a common mental illness characterized by 

persistent sadness and a loss of interest in activities that 

people normally enjoy, accompanied by an inability to 

carry out daily activities, for 14 days or longer [1]. The 

latest estimates from WHO show that more than 300 

million people are now living with depression, and it has 

increased more than 18% between 2005 and 2015. The 

barriers stand between the patients and effective treatments 

mentioned by WHO including lack of resources, lack of 

trained health-care providers, social stigma associated 

with mental disorders and inaccurate assessment. In 

countries of all income levels, people who are depressed 

are often not correctly diagnosed [1]. To diagnose a patient, 

doctors usually conduct a psychiatric evaluation by asking 

questions about symptoms, thoughts, feelings and 

behavior patterns. Patients are sometimes asked to fill out 

questionnaires as well [2]. 
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The lack of biomarkers makes diagnosing depression a 

subjective decision that depends highly on the experiences 

of doctors. Electroencephalogram (EEG)is an easy-to-use, 

cost-effective technique that records electrical activities in 

brain. Recent studies show that features extracted from 

EEG could be used as biomarkers for depression diagnosis. 

A number of studies have shown that linear features [3]-[6] 

and nonlinear features of EEG [7]-[10] could be used as 

significant differentiating factors between individuals with 

and without depression. Acharya, et al. used nonlinear 

features including fractal dimension, largest Lyapunov 

exponent. sample entropy and DFA has reached an 

accuracy of 98% [11]. Mumtaz, et al. extracted EEG alpha 

band inter-hemispheric asymmetry and spectral powers to 

construct a support vector machine classification model 

with an accuracy of 97% [12]. Hasanzadeh, Mohebbi, & 

Rostami used features including Lempel-Ziv complexity, 

Katz fractal dimension and power spectral density to reach 

an accuracy of 91.3% [13]. However, due to the difficulties 

of collecting data, especially patient data, most studies 

have used a relatively small data set. Acharya, et al. used 

30 subjects including 15 health and 15 patients [11]. 

Mumtaz, et al. used 63 subjects including 30 health and 33 

patients. [12] Hasanzadeh, Mohebbi, & Rostami used 46 

patients including 23 treatment responders and 23 non-

responders [13]. Smaller datasets are more likely to be 

biased and machine learning models are known to be more 

robust and convincible with larger training and testing 

dataset. 

In this study, we have collected EEG data from 213 

subjects, including 71 individuals without depression 

(“health controls”) and 142 patients with depression 

(“depression patients”). We extracted a set of linear 

features, nonlinear features and power spectral features 

were extracted from the EEG signal. 3 feature selection 

models were then applied to find the subset of features that 

best represented the data. All 3 subsets of extracted 

features were used on 6 different machine learning 

methods including Support Vector Machine (SVM) and 

Logistic Regression (LR). The trained machine learning 
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model could relate the EEG signal features to the subject 

groups, i.e., health controls and depression patients. 

The paper is organized as follow: Section II introduces 

the procedures of data collection, feature extraction, 

feature selection and building classification models; 

Section III lists and compares the results of feature 

selection and different machine learning classification 

models; Section IV concludes the paper and proposes 

future research plan. 

II. MATERIALS AND METHODS

A. Data Collection

EEG signals were recorded from 71 health controls and

142 depression patients from Beijing Anding Hospital, 

Capital Medical University, Beijing, China. A written 

consent form was obtained from each participant. Sixty-

four channels of EEG data were recorded using 10-20 

systems, and the recording frequency was set to 5k Hz. 

Subjects were asked to sit in a quiet room and the EEG 

signal was recorded for 3 minutes with subjects’ eyes open 

and 3 minutes with subjects’ eyes closed. To avoid eye-

movement artifacts, the EEG data of closed-eyes were 

used. 2 channels were excluded from the data due to device 

defect.  A band filter was used to remove all the 

frequencies above 40 Hz and the data was down sampled 

to 256 Hz for feature extraction. The data was then 

decomposed into six EEG sub-bands of interest: delta 

(0.5–4 Hz), theta (4–7 Hz), alpha1 (8–10 Hz), alpha2 (10–

12 Hz), beta (13–30 Hz) and gamma (30–40 Hz) using the 

band-passed FIR filter. 

B. Feature Extraction

In this study, a total number of 13 features, specified in

Table I, are extracted. The features include linear features, 

non-linear features and power spectral features. All 

features except for power spectral density, were calculated 

over a 3-minute data cut and each feature was extracted 

from delta band, theta band, alpha1 band, alpha2 band, 

beta band gamma band and full band of each channel.  

Power spectral density was extracted from each channel of 

all sub-bands above except for the full band, and for each 

sub-band, an average PSD was calculated over all channels. 

Therefore, a total of 6454 features (linear features: 7 

features x 7 bands x 62 channels, non-linear features: 5 

features x 7 bands x 62 channels, power spectral features: 

1 feature x 6 bands x 62 channels, average PSD: 1 features 

x 6 bands) was extracted from the EEG data. 

C. Feature Selection

It is important to determine which subset of features,

from the 6454 total features calculated, can best describe 

the difference between depression patients and health 

controls. In our study, we experimented 3 different feature 

selection models to find a better subset of features that 

would deliver the best accuracy and recall of classification 

model. 

1) L1-based feature selection

The L1 based feature selection method takes advantages

of the fact the linear models using L1 regularization have 

sparse solutions. L1 adds absolute values of coefficient as 

a penalty term. Due to the inherent linear dependence of 

the model parameters, regularization with L1 disables 

irrelevant features leading to sparse sets of features [14]. 

2) Tree-based feature selection

The tree-based feature selection method takes

advantages of the interpretability of tree model. With each 

feature contributes to the final decision, the importance 

score of the feature is calculated. The method ranks all the 

importance scores, so the features with lower scores 

contributes less to the final decision and could be removed. 

TABLE I. FEATURES EXTRACTED FROM EEG SIGNAL 

Name Property 

Variance 

Linear Features 

Absolute centroid 

Absolute power 

Relative power 

Activity 

Kurtosis 

Skewness 

Spectral Entropy 

Non-linear Features 

Hjorth Complexity 

Hjorth Mobility 

HFD 

DFA 

Power Spectral 

density 

Power Spectral 

Features 

D. Classification

In this study, we deployed some of the most classic

machine learning models to learn from the features 

extracted and selected above and make predictions. To 

gain a more accurate result, 5-fold cross validation was 

performed 10 times for each subset of features of each 

model. To better compare the results, we also train a 

machine learning model for each sub-bands of every 

calculated features and for all features combined together. 

Accuracy and recall used to estimate the performance of 

the model are given by:  

Accuracy =
True Postives+True Negatives

Total Examples
  (1) 

Recall =
True Postives

True Positives+False Negatives
  (2) 

The machine learning models used are support vector 

machine (SVM), KNN, decision tree, Naïve Bayes, 

random forest and Logistic Regression (LR).  

1) Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised

machine learning model that could be used for 

classification. The algorithm of SVM creates a line or a 

hyperplane to separate the data into classes.  

2) Decision tree

Decision Tree is a tree-like predictive model. In a

decision tree, each interior node represents an input feature, 

the leaf node represents the class label, and the branches 

represents the decision-making progress from nodes to 

leaves. 

3) Random forest

Random forests, shown in Fig. 1, is a combination of

tree predictors such that each tree depends on the values of 

a random vector sampled independently and with the same 
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distribution for all trees in the forest [15]. It is an ensemble 

learning method for classification. Random forest grows 

many decision trees. When classifying, the input was put 

to each decision dree and each tree returns a classification 

result, and the trees “vote” for the final result. The forest 

then returns the classification with the most votes [16]. 

 

Figure 1. Random forest model. 

III. RESULTS AND DISCUSSION 

In this paper, 13 linear, non-linear and power spectral 

features were calculated on each channels of EEG data on 

each sub-band, and a total of 6454 features were extracted.  

3 different feature selection models were used to select the 

feature subset that best describes the data (see Table II). 6 

machine learning methods were deployed for each 

calculated feature, selected feature subsets and for all 

features combined. A 5-fold cross-validation was 

performed 10 times for each model and the average 

accuracy and recall for each features and feature subsets 

and all feature combined are calculated, shown in Table III 

and Table IV.  

Table III shows the models with best performances for 

each feature calculated. Among all the linear features, 

Skewness on gamma band achieved the highest accuracy 

of 68.28% with a recall of 88.48% using the SVM model. 

Activity on theta band achieved the highest recall of    

92.17% with accuracy of 67.01% using the random forest 

model.  

For non-linear features, Complexity on gamma band 

achieved the highest accuracy of 79.63% using the KNN 

model, with a recall of 88.42%. HFD on beta band 

achieved the highest recall of 89.63% with an accuracy of 

65.94% using random forest model.

TABLE II. FEATURE SELECTION MODELS AND SELECTED FEATURES 

Feature Selection 

Models 

Number of 

Feature Selected 

Selected Features 

L1-based feature 

selection 
97 

Features including Kurtosis,  

Hjorth Complexity of beta band, gamma band, delta band and full band from 57 channels 

Tree-based feature 

selection 
13 

Features from 11 channel including  

AF4(Kurtosis on alpha1),  

F8(complexity on alpha1),  

CPz (peak on gamma, DFA on alpha2),  

FC2(mobility on beta),   

FC3(absolute centroid on theta),   

FC3(mobility on delta),   

FT7(relative centroid on delta),  

FT8(complexity on alpha2),   

C4(complexity on alpha1),  

PO3(complexity on full band),   

TP9(complexity on gamma)  

 and P7(spectral entropy on full band). 

FDR - based 

feature selection 
453 

Features mostly including 

Hjorth Complexity 

Hjorth Mobility,  

Activity from delta, theta, alpha1, alpha2, beta, gamma and full band 
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TABLE III. SINGLE FEATURE CLASSIFICATION RESULTS 

Name Accuracy Recall Machine Learning Model Sub-band Used 

Variance 67.90% 91.60% SVM Full-Band 

Absolute centroid 67.51% 90.37% KNN Gamma 

Absolute power 66.26% 91.47% Random Forest Gamma 

Relative power 65.10% 88.45% Random Forest Delta 

Activity 67.01% 92.17% Random Forest Theta 

Kurtosis 69.29% 90.20% Random Forest Gamma 

Skewness 68.28% 88.48% SVM Gamma 

Spectral Entropy 70.24% 84.58% SVM Gamma 

Hjorth Complexity 79.63% 88.42% KNN Gamma 

Hjorth Mobility 76.29% 86.00% Random Forest Alpha1 

HFD 65.94% 89.63% Random Forest Beta 

DFA 69.43% 88.02% Random Forest Alpha2 

Power Spectral density 66.95% 90.13% Random Forest Gamma 

TABLE IV. CLASSIFICATION RESULTS OF SELECTED FEATURE 

Feature Set 
Number of Feature 

Selected 

Accuracy/ 

Recall 

Model Names 

SVM KNN 
Decision 

Tree 

Naïve 

Bayes 

Random 

Forest 

Logistic 

Regression 

All Features 6454 
Accuracy 69.20% 64.54% 67.34% 57.10% 76.97% 68.50% 

Recall 79.30% 84.02% 75.80% 53.06% 89.54% 77.24% 

L1-based feature 

selection 
97 

Accuracy 68.31% 64.69% 62.39% 63.33% 66.92% 
 

67.62% 

Recall 72.29% 85.25% 71.69% 77.58% 94.82% 71.16% 

Tree-based feature 

selection 
13 

Accuracy 63.17% 67.73% 73.17% 63.56% 81.16% 64.44% 

Recall 57.90% 79.64% 78.78% 68.50% 91.96% 64.65% 

FDR - based 

feature selection 
453 

Accuracy 68.68% 74.16% 69.70% 64.49% 78.35% 68.78% 

Recall 63.64% 78.91% 76.84% 55.91% 88.81% 66.75% 

 

Power Spectral Density reached the highest accuracy of 

66.95% with a recall of 90.13% on gamma band using 

random forest model. 

Among models that uses all 6454 features, the random 

forest model has the highest accuracy of 76.97% and the 

highest recall of 89.54% using as shown in Table IV. From 

the 3 subsets of features selected using different feature 

selection models, a subset of 13 features selected by extra 

tree classifier performed the best, with an accuracy of 

81.16% and a recall of 91.96% using random forest model. 

These 13 features are from 11 channels: AF4(Kurtosis on 

alpha1), F8(complexity on alpha1), CPz (peak on gamma, 

DFA on alpha2), FC2(mobility on beta), FC3(absolute 

centroid on theta, mobility on delta), FT7(relative centroid 

on delta), FT8(complexity on alpha2), C4(complexity on 

alpha1), PO3(complexity on full band), TP9(complexity 

on gamma) and P7(spectral entropy on full band). The 

performance of this model is shown in Fig. 2, using 

receiver operation characteristics (ROC). The electrodes 

shaded on the electrode map shown in Fig. 3 are the 11 

channels used to calculate features for the model. This 

model is considered having the best performance with 

overall highest accuracy and recall. It also has the least 

amount of features and channels being used. 

 

Figure 2. ROC plot for random forest model using 13 features. 
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Figure 3. 11 channels used by random forest model on an electrode 

map. 

It is shown in Table IV that the recalls from most of the 

models are higher than the accuracies. We consider that it 

is because the imbalance of the dataset. With 71 health 

controls and 142 patients, the size of the patient data is 

twice of the health controls. Since recall reflects how many 

of the actual patients our models captured by labeling it as 

patients. With more patient data, the models learn more 

about characteristics of patients. We believe that with a 

more balanced dataset, it is possible that the accuracies of 

the models could be improved as well as the recalls. 

IV. CONCLUSION 

In this study, we have looked at different machine 

learning models using features extracted from EEG signal 

on a larger dataset compared to previous studies. The best 

model used 11 channels out of 64 channels to calculate 

features that could be used to detect depression. Although 

the accuracy and recall gained from the selected model 

could still be improved, it shows that the use of machine 

learning model to classify depression patients and healthy 

people is a promising approach. The results show a higher 

rate of recall than accuracy, which we believe may be 

caused by the imbalance of the dataset. With a larger heath 

control dataset, the model can learn more about the 

features and characteristics of healthy people, thus 

generating a higher accuracy rate. In the future, we hope to 

collect more healthy people data to gain a larger and more 

balanced dataset to train a more accurate model. 
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