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Abstract—Artificial pancreas technology has been 

continuously developed over the past few years. However, 

there are still weaknesses found in recent technology in 

relation to injection of insulin subcutaneously into Type 1 

Diabetes Mellitus (T1DM) patient. The injection of insulin 

into the patient’s body must be specific, exact and precise to 

ensure that the blood glucose level is between normoglycemic 

ranges, i.e. 4.5 mmol/L to 6.0 mmol/L so as to avoid 

hypoglycemia and hyperglycemia episodes. Therefore, this 

study aims to find the optimum insulin infusion rate into the 

patient’s body for the blood glucose level (BGL) to be 

maintained at a safe glycemic range. The study mainly 

focuses on computer simulation in MATLAB using improved 

Hovorka equations coupled with an enhanced model 

predictive control (eMPC) as its control scheme in order to 

control the BGL in T1DM. Only meal disturbance factor is 

included and it varies in carbohydrate (CHO) intake during 

breakfast, lunch and dinner times. The simulation was 

successfully carried out and its findings indicated that the 

safe glycemic range was able to be reached at shorter time 

and maintained for a prolonged period as compared to 

previous workers.  

Index Terms—type 1 diabetes mellitus, Hovorka model, in 

silico works, model predictive control 

I. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is a chronic illness 

that is characterized by chronic immune-mediated 

destruction of pancreatic β-cells and hence leads to partial, 

or in most cases, absolute insulin deficiency [1]. T1DM 

patients have to depend on exogenous insulin injection 

multiple times daily in order to bring down their blood 

glucose level (BGL). A correct dosage of insulin has to be 

determined to prevent the occurrence of hypoglycemia and 

hyperglycemia as both conditions are unfavourable for the 

patient. Hypoglycemia can be clinically diagnosed through 
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symptoms such as sweating, tachycardia and blurred 

vision. Severe hypoglycemia could lead to severe 

morbidity and mortality if not treated immediately. 

Symptoms of hyperglycemia can be seen when the patient 

experiences increased thirst, polydipsia and polyuria. 

Developing an Artificial Pancreas (AP) will help in 

automating Continuous Subcutaneous Insulin Infusion 

(CSII) task to prevent both episodes in a closed loop 

manner. The control algorithm in AP should be able to 

measure and predict the accurate flow rate and amount of 

insulin infusion to regulate BGL within normoglycemic 

range in the closed loop system. Established glucose-

insulin dynamic models such as Bergman minimal model 

[2], Dalla Man model [3] and Hovorka model [4] have 

been used to describe glucose-insulin dynamics system for 

T1DM
 
patient. 

 

A modification of Hovorka model equations, also 

known as improved Hovorka equations, was carried out as 

in [5]-[8] using
 
system identification techniques. In the 

improved model, the interrelations between parameters 

and its specific subsystems (i.e. glucose subsystem, insulin 

action subsystem and plasma insulin subsystem) were 

improvised [8], [9] which gave better performance in 

controlling BGL fluctuations for T1DM.

 

Handfuls of controller system such as Artificial Neural 

Network (ANN) [10]-[14], Fuzzy Logic Control (FLC) 

[15]-[19], and Proportional Integral Derivative (PID) 

controller were initially employed in AP research.

 

However, Model Predictive Control (MPC) has nowadays 

started gaining more attention than others as the most 

suitable control scheme used in regulating BGL for T1DM

 

[20]-[24]. The main objectives of this study are namely: 1) 

to simulate the BGL of T1DM patients based on variations 

in their meal intake using the improved equations, and 2) 

to determine the optimum insulin infusion rate so as to 

achieve BGL at shorter time and maintain it at 
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normoglycemic range for a prolonged period. The study 

limitations include single hormone used i.e. insulin and 

only meal intake was taken as a disturbance. 

II. METHODOLOGY 

The model used is Hovorka model with modified 

Hovorka equations [8], [9]. Parameters, constant values 

and CHO intakes were taken from Hovorka Model [4], 

Modified Hovorka equations and real life T1DM patients’ 

data are as defined respectively in Table I, Table II and 

Table III. Using system identification techniques, the 

original mathematical equations from Hovorka Model 

were firstly enhanced into a new set of equations to 

improve the interrelation between glucose and insulin 

action subsystem. Schematic diagram depicting Hovorka 

equations and modified Hovorka equations are shown in 

Fig. 1 and Fig. 2, respectively. The modified Hovorka 

equations improve the parameters interaction within its 

glucose subsystem, insulin action subsystem and plasma 

insulin subsystem by adding the insulin on action transport 

(x1), insulin on action disposal (x2) and insulin on 

endogenous production (x3) in both accessible 

compartment, Q1 and non-accessible compartment, Q2 [8], 

[9].  

TABLE I.  LIST OF PARAMETERS 

Parameter’s 

symbol 
Descriptions Value & Unit 

Sf
IT 

Insulin sensitivity of 

distribution/transport 
51.2×10-4 min-1 per mU L-1 

Sf
ID 

Insulin sensitivity of 

disposal 
8.2×10-4 min-1 per mU L-1 

Sf
IE 

Insulin sensitivity of 

Endogenous Glucose 

Production (EGP) 

520×10-4 min-1 per mU L-1 

EGP0 
EGP extrapolated to zero 

insulin concentration 
0.0161 mmol kg-1min-1 

F01 
Non-insulin-dependent 

glucose flux 
0.0097 mmol kg-1min-1 

tmax,I 

Time-to-maximum of 

absorption of 

subcutaneously injected 

short acting insulin 

55 min 

TABLE II.  LIST OF CONSTANTS 

Constant’s 

symbol 
Descriptions Value & Unit 

k12 Transfer rate 0.066 min-1 

ka1 Deactivation rate 0.006 min-1 

ka2 Deactivation rate 0.06 min-1 

ka3 Deactivation rate 0.03 min-1 

kw1 Activation rate 50.1 min-1 

kw2 Activation rate 50.1 min-1 

kw3 Activation rate 50.1 min-1 

kw11 Activation rate −10 min-1 

kw22 Activation rate −0.01 min-1 

kw33 Activation rate −0.01 min-1 

ke 
Insulin elimination from 

plasma 
0.138 min-1 

VI Insulin distribution volume 0.12 L kg-1 

VG 
Glucose distribution 

volume 
0.16 L kg-1 

AG 
Carbohydrate (CHO) 

bioavailability 
0.8 (dimensionless) 

tmax,G 
Time-to-maximum of CHO 

absorption 
40 min 

TABLE III.  CARBOHYDRATE (CHO) INTAKE 

Item g CHO mol CHO mmol CHO 

Breakfast 60 2.068 2068 

Lunch 90 3.102 3102 

Dinner 90 3.102 3102 

 

 

Figure 1.  Schematic diagram of Hovorka model. 

 

Figure 2.  Schematic diagram of improved Hovorka equations from 

Hovorka model. 

The flowchart of the research methodology is described 

and shown in Fig. 3. 
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Figure 3.  Flowchart of the research methodology. 

The equations used in the improved Hovorka model are 

as follows: 

dQ1

dt
= EGPO + UG + 0.01Q2 + [x1kw1 + x2kw2 +

x3kw3] − FRQ1 −[
FC

01

VG
G(t)] Q1 − 0.002Q1   (1) 

dQ2(t)

dt
= [kw11x1(t) + kw22x2(t) + kw33x3(t)] +

        EGP0[kw1x1(t) + kw2x2(t) + kw3x3(t)] − k12Q2   (2) 

Equations (1) and (2) are the modified Hovorka 

equations in which the insulin action variables have been 

added. Q1 and Q2 constitute the mass of glucose in the 

accessible and non-accessible compartments for the 

glucose subsystem respectively. kw1, kw2, kw3, kw11, kw22, 

and kw33 are the transfer rate constants for the insulin action 

subsystem. k12 is the transfer rate constant from non-

accessible compartment to accessible compartment. EGP0 

is the endogenous glucose production that was 

extrapolated to the zero insulin concentration. UG is the 

quantity of glucose absorbed into blood vessel. 

Other than that, FR is renal glucose clearance while Fc
01 

is the total of non-insulin dependent glucose flux. 

FC
01 = {

F01if G ≥ 4.55 mmolL−1

F01G

4.5
   otherwise

 

FR = { 0.003(G − 9)VGif G ≥ 9 mmolL−1

0                                           otherwise
 

Equations (3) and (4) are the equations for insulin 

subsystem in the accessible and non-accessible 

compartment. S1 and S2 are insulin sensitivity in the 

accessible and non-accessible compartment respectively. 

dS1(t)

dt
= u(t) −

S1(t)

tmax,I                            
(3) 

dS2(t)

dt
=

S1(t)

tmax,I
−

S2(t)

tmax,I
                               (4) 

In plasma insulin concentration equation (5), insulin 

action variables have also been added. I(t) is the plasma 

insulin concentration while ke is the fractional elimination 

rate. VI is the distribution volume and UI is the production 

amount of insulin required into the blood vessel. 

dI(t)

dt
= [

U1(t)

VI
] − keI(t) − [kw1x1(t) +   kw2x2(t) +

kw3x3(t)] (5) 

UG =
DGAGte

t
tmax,G

tmax,G
2                              (6) 

where: 

UG = two-compartment chain with identical transfer rates 

1/tmax,G (mmol/min) 

DG = meal intake (mmol CHO) 

AG = carbohydrate bioavailability (dimensionless) 

The equations (7), (8) and (9) are the insulin action 

subsystem (I) equations on action transport, action 

disposal, and endogenous production respectively. 

[
dx1

dt
] = ka1x1(t) + kw1I(t) + kw11I(t)          (7) 

[
dx2

dt
] = ka2x2(t) + kw2I(t) + kw22I(t)         (8) 

[
dx3

dt
] = ka3x3(t) + kw3I(t) + kw33I(t)         (9) 

III. RESULTS AND DISCUSSION 

Fig. 4 shows the simulation results carried out and 

evaluated using the data from real life patient which 

include patient’s body weight (BW), the instantaneous 

time during the meal taken (meal time in 24-hour system) 

and the total amount of meal taken (CHO rate in bolus size, 

mmol/min). 

Other data collected covers the time of insulin injection 

(Insulin time in 24-hour system) and the amount of insulin 

dose (Insulin rate in bolus size [mU/min]). Glucose-insulin 

dynamic was analysed and therefore the simulation was 

evaluated based on the amount and time of insulin being 

administered as well as meal intakes (meal disturbance) 

and how these parameters influence the BGL of the patient. 

A. Effect of Insulin Administration on BGL during Meals 

As shown in Fig. 4, the first peak is the meal disturbance 

for breakfast followed by lunch and dinner, respectively. 

For our simulation, only single hormone (insulin) instead 

of dual hormone (glucagon) is used to regulate blood 

glucose level. The hormone that helps in regulating blood 

glucose level is the insulin which is produced by β-cell of 

the pancreatic islet of the pancreas. Due to inability of 

Type 1 diabetes patient to produce insulin because of their 

malfunctioning pancreas, the glucose inside their body 

cannot be broken into energy thus increasing BGL within 

a period of time until they react in a state called 

hyperglycemia. For our simulation, hyperglycemia is a 

condition in which the BGL exceeds 6 mmol/L. For three 
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meal intakes in bolus size per day, a total of three insulin 

injections in bolus size was administered. The amount of 

carbohydrate (CHO) intake was taken from real life patient 

data with the insulin infusion rate was determined 

manually using semi-closed control loop system. The data 

was summarised as in Table IV.

 

Figure 4.  Simulation results for BGL versus insulin infusion rate at 1440 min (24 hours). 

TABLE IV.  AMOUNT OF MEAL INTAKE AND INSULIN INFUSED 

Meal Time (24-

hour system) 
Meal Time (min) 

CHO in bolus 

size (g) 

CHO rate in bolus 

size (mmol) 

Insulin time (24-hour 

system) 
Insulin Time (min) 

Insulin rate in 

bolus size 

(U/min) 

6:00 am 60 60 2068 5:00 am 0 0.0529 

3:00 pm 420 90 3102 1:10 pm 420 0.0010 

10:00 pm 720 90 3102 9:30 pm 720 0.000001 

Bolus insulin is the insulin taken specifically at meal 

time to keep blood glucose level within normoglycemic 

range for that particular meal intake. The insulin was taken 

before meal in this simulation. From Fig. 4, it was 

observed that the BGL with the insulin administration is 

more stable than those without insulin administration 

periodically. However, if no insulin was administered at 

neither at any time for the day, the BGL will rise up until 

it reaches hyperglycemia range with no sign of going down. 

Thus, it will be highly dangerous for the patient as they 

risk a lot of serious complications due to extremely high 

BGL. The BGL was compared with previous research, see 

[8]. However, the meal intake values were not the same as 

they used meal values from [25]. 

1) Determining BGL during breakfast 

During breakfast as observed in Fig. 5, the patient 

consumed a lesser amount of CHO compared to lunch and 

dinner. Therefore, only a little spike of graph indicating 

that the person had meal intake during that instantaneous 

time. However, the BGL exceeded the 6 mmol/L range and 

fluctuated at the beginning because the patient had already 

experienced the state of hyperglycemia in the morning. 

This followed the record of the real patient from which the 

meal data was extracted that the person actually 

experienced hyperglycemia early in the morning. 

Comparing the data with [8], the graph seems to fall rightly 

on the normoglycaemic range whereas the prior research 

fell short of 10 mmol/L from the normoglycemic range and 

recorded hyperglycemic state. This is because in current 

research, we have extended the time gap between breakfast 

and lunch so as to enable the curve to be in desired range 

just before lunch. Even though the amount of insulin 

infused into the patient can be controlled, the ability of the 

insulin itself to be absorbed fast or slow is highly 

dependent on the patient itself. 

 

Figure 5.  Simulation BGL versus time during breakfast. 

2) Determining BGL during lunch 

During lunch as observed in Fig. 6, the patient 

consumed a higher amount of CHO compared to breakfast. 

Therefore, a higher peak of curve was observed as 

compared to breakfast when there was a meal disturbance. 

The amount of insulin infused was lower than those at 

breakfast time. This is because the amount of insulin as 

calculated from the algorithm has not been fully utilised. 

Therefore, it is being used in the next round of meal 

disturbance. Thus, the graph will keep falling until it 

reaches normoglycemic range. Prior to the patient 

experiencing the state of hypoglycemia, there will be 

another meal disturbance that will eventually increase the 

BGL. Comparing the result from previous research [8], 
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previous research had the curve more consistent as 

compared to current research. This might be due to the low 

amount of insulin infused during breakfast which leads to 

more stable curve during dinner. The value of insulin 

infused could have been more precise as compared to 

current research. The drawback of this occurrence is that 

the patient will stay in hyperglycemic state before lunch 

which is an undesirable and could be in dangerous 

condition. 

 

Figure 6.  Simulation BGL versus time during lunch. 

3) Determining BGL during dinner 

During dinner as observed in Fig. 7, the patient 

consumed relatively the same amount of CHO as in lunch. 

The peak of curve of the dinner was lower because at the 

beginning of meal time, the BGL was already at decreased 

level compared to meal time before lunch. The simulations 

were done at 24-hour time. Thus, the patient was already 

backing at 5:00 am (time for another insulin infusion) at 

the end of dinner time. The patient was supposed to be in 

state of hyperglycemia according to data; however, it did 

not happen due to the probability of excess insulin being 

infused during the simulation. It could also be one of the 

reasons why BGL keeps falling until the patient wakes up 

the next morning as the insulin absorption is still ongoing 

within given period of time. Thus, the simulation might 

have to be extended to more than one day or one full week 

to observe the complete change of BGL of the virtual 

patient. 

 

Figure 7.  Simulation BGL versus time during dinner. 

B. Effect of Insulin Administration during and after 

Meal Times on BGL 

The insulin administered time is very important in 

managing blood glucose level. The time taken for insulin 

infusion and the time when it is administered, will affect 

the smoothness of the graph pattern in retaining BGL 

within normoglycemic range. The insulin administered for 

the first meal disturbance simulation is 60 minutes before 

meal time. The second one is during meal and third one is 

after meal. As shown in Fig. 4, the BGL profile looks 

better with prior injection of insulin before any meal intake. 

Although the BGL did not drop immediately, the time 

taken for BGL to reach normoglycemic range was also 

quite lengthy. The results have to be compared with the 

data of real time patient BGL corresponding to their insulin 

infusion as in the simulation. We need to take note that for 

continuous subcutaneous insulin injection, the time taken 

for insulin absorption is much higher as compared to CHO 

absorption. Therefore, there is a need to prior injection of 

insulin before meal is taken. There are variety types of 

insulin in the market today and the accessibility of each 

patient to specific type of insulin might vary from one to 

the other in terms of fast or slow acting insulin. These 

variations would have affected the value of glucose 

absorption rate, UG. For the purpose of this simulation, the 

insulin we are currently using is a slow acting type of 

insulin. For the slow acting, the longer the gaps between 

meal intake and insulin infusion, the better control we have 

on making and retaining the BGL within normoglycemic 

range. 

1) Insulin infusion during meal time 

As shown in Fig. 8, the graph had shown undesirable 

outcome whereas none of the BGL dropped to 

normoglycemic range for infusion of insulin during meal. 

This is because the insulin needs some time to react. The 

insulin inside the body has to react with the components of 

glucose, which in turns take an undefined condition 

although predictable amount of time required to convert 

them into energy. The graph however shows steady and 

consistent flows although it exceeds normoglycemic range 

between 9 to 12 mmol/L.  It is still unknown why the graph 

had been more stable when the insulin was injected during 

meal time. Theoretically, it could have been the presence 

of CHO during meal which allows more insulin to react at 

a higher rate compared to infusion before meal. To 

compensate the inconsistency in the profile of the graph, it 

is recommended to increase the amount of insulin infusion 

rate during meal. 

 

Figure 8.  Insulin infusion during meal time. 

2) Insulin infusion after meal time 

From Fig. 9, it was seen that the addition of insulin after 

meal time did not show any significant difference after 

comparing it with the graph during meal time as shown in 

Fig. 8. The difference is very slight therefore it can be 

concluded that both profiles during and after the meal are 
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the same. The insulin design for these equations and its 

parameter values are meant for short acting insulin. It is 

therefore recommended that for sensitivity towards insulin 

absorption, these equations might need to be modified for 

simulation purposes that use quick or fast acting insulin in 

the future works. 

 

Figure 9.  Insulin infusion after meal time. 

C. Effect of Meal Disturbance during Snack Time 

There are possible meal disturbances at snack time 

which need to be observed in order to have better control 

on a BGL curve since insulin is the only hormone 

simulated to control the BGL in this simulation study with 

the improved equations. In addition, there is currently no 

real time artificial pancreas that is capable of delivering 

dual hormones (i.e. insulin and glucagon) other than the 

4th generation artificial pancreas which uses insulin and 

pramlintide hormones (substitute hormone that acts such 

as glucagon). Table V shows the amount of CHO 

consumed during snack times 1 and 2 taken after lunch and 

dinner, respectively. Table VI shows the insulin time and 

insulin infusion rate during the snack times. The profile of 

BGL curve after meal disturbance during the snack times 

is shown in Fig. 10. 

 

Figure 10.  Addition of snack time after lunch and dinner. 

From Fig. 10, the graph shows that the curve of the BGL 

is slightly changed due to addition of snack times. The 

addition of snack time has improved the BGL curve for 

dinner by letting not to be so near to below normoglycemic 

range as compared to the graph profile without snack time. 

However, the BGL curve for lunch was slightly deviated 

by exceeding normoglycemic range at mmol/L. The 

change is not significant and not far from ideal range 

which is between 4.5 mmol/L until 6.0 mmol/L. Thus, it 

can be said that the additions of snack times do improve 

the BGL curve significantly for dinner while not deviating 

the BGL curve part during breakfast and lunch meal 

intakes. An improvement is suggested by adjusting the 

value of insulin infusion during breakfast or lunch that are 

not carried out in this simulation study. 

TABLE V.  SNACK TIME AND SNACK BOLUS RATE 

Snack time 

(24-hour 

system) 

Snack time 

(min) 

CHO in bolus 

size (g) 

CHO rate in bolus 

size (mmol) 

6:00 pm 785 30 1033 

12:00 pm 1130 30 1033 

TABLE VI.  INSULIN TIME AND INSULIN INFUSION RATE 

Insulin time (24-hour 

system) 

Insulin time 

(min) 

Insulin rate in bolus 

size (U/min) 

5:30 pm 725 0.001 

11:30 pm 1070 0.000 

 

D. Effect of Semi-closed Model Predictive Control Loop 

System on BGL 

In this simulation work, a semi-closed loop system of 

Model Predictive Control (MPC) was implemented in 

order to obtain better control of BGL of the virtual TID 

patient body. The outcome for this control is seen as in the 

graphs for which the BGL’s were within normoglycemic 

range prior to next meals. However, the BGL value before 

meal was slightly hypoglycemic by 0.1 decimal points for 

breakfast and lunch. The time window before the next 

meal was highly important because the BGL would not 

have dropped to a desired range if the time window had 

not been extended from its usual range. It is however 

managed to predict the right dose for insulin in order to 

lower the BGL within normoglycemic range by reducing 

the errors ± 0.9 in 24-hours simulation time. 

E. Effect of Simulation in MATLAB Using ODE45, 

ODE23s and ODE 15 

For this simulation work, the equations used are 

modified Hovorka equations instead of original Hovorka 

equations. Hovorka equations were classified as non-stiff 

equations [26]. The simulations were first run using ODE 

Solver of ODE45 and ODE23s which are frequently used 

for stiff ordinary differential equations (ODE). A smoother 

curve plot was obtained when the simulations were run 

using ODE15. ODE15 is an ODE Solver that is used for 

stiff equations. It can be said that the equations of original 

Hovorka were partly modified and the improved equations 

may be suggested as stiff ODE rather than non-stiff ODE. 

IV. RESULTS AND DISCUSSION 

In summary, the simulation work was successfully 

carried out in different conditions to observe and evaluate 

the differences in blood glucose control (BGC) under a 

wide variety of conditions. Other than that, the 

implementations of Model Predictive Control in semi-

closed loop system can contribute to better control of BGL 

for the virtual patients that use real life data for meal 

disturbance parameters in the simulation. Glucose-insulin 

dynamics were being observed as having smoother 

although demonstrated lengthy curve when the equations 
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used were modified Hovorka equations in the simulation 

study. For future works, it is recommended to study the 

impact of using different values of initial variables or 

parameters to control BGL in the simulation for the virtual 

patient. It is also high time for a comparative study to be 

carried out to compare results obtained between clinical 

and simulation works in treating T1DM patients.  
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