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Abstract—The purpose of this study is to improve the 
current methodology SI/SIR by introducing the sensitivity 
of infection rate to climate change variables such as 
temperature and humidity to reproduce infection by 
anophelines gambaie. The improvement provides a 
satisfactory model, where the number of mosquitoes is 
controlled by the time and seasons, which change the 
malaria reaction. Rwanda weather facilitates the lodgment 
of these vectors where the variation of temperature is 
ranged between 10 and 29°C and humidity is in the range of 
30% – 97%. With climate change, distress the change into 
the number of mosquitoes is complex to change, this makes 
the reaction of the infection rate to respond proportionally 
to the change of mosquito and it is effective for the 
population at risk of malaria to respond to this change, 
especially in some season where the infection rate can be 
more than 0.2. Furthermore, analysis and comparison are 
made, where the infection rate as a time-dependent variable, 
demonstrate a significant result where the explanation of the 
result has the meaning of the climate change variables. The 
result provided by the new model proves the importance of 
the focus mostly on infection rate sensitivity.   
 
Index Terms—climate change, variables, seasonal, humidity, 
temperature, approach, mosquito, anopheline gambaie, 
malaria disease, population, human, SI/SIR model, infection 
rate, sensitivity 
 

I. INTRODUCTION AND BACKGROUND 

The world has been and is still facing the presence of 
Malaria disease, which is among the high placed problem 
of the world. This disease has been discovered in 1880 
[1], its studies have been conducted and there have been 
many new discoveries about the disease. The disease was 
defined to be a mosquito-borne epidemiologic disease 
that is transmitted from human to human by the bites of 
infected female mosquitoes, and this varies depending on 
the season. Like most of the sub-Sahara countries in 
Africa, Rwanda is distress with the disease, which 
presents different risks, including death. 
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Rwanda has seasons that allows mosquitoes’ to be 
active and this makes the presence of malaria disease 
highly infectious in this region since it has been 
discovered. Numerous strategies to eradicate the 
incidence were applied but the disease still exists and the 
result is not enough. 

Previous works [2]-[8] review the climate change 
variables involvement into, mosquitoes’ life cycle and 
how mosquitoes’ presence makes a big change to the 
disease spreading into Human [3] and [9]. The infection 
rate of the disease depends on time, temperature and 
related to humidity because they take an effect on the life 
cycle of the anophelines reproduction, and increase the 
number of bites [10], [11]. SI/SIR model has been used to 
study the influence of climate change on the effect of 
Malaria disease. 

The study [4] focused on the mosquitoes’ birth and 
statistical determination of rates of mosquitoes’ type. In 
this work, focusing on the life cycle of the mosquito, 
some data analyses were applied to improve the beta 
sensitivity and apply in the SI/SIR model, for the 
improvement of the model. 

Beta sensitivity epitomizes the reaction for the 
infection rate by the time goes by with the dependency of 
different factors; in this case, temperature and humidity 
are the main variables 

Susceptible-Infected-Recovery (SIR) is a methodology 
to predict the spreading disease based on the data in a 
previous year. This model has been studied and modified 
by many researchers [9], [12]-[15] depending on their 
goals; especially Malaria disease study. To solve 
differential equations in this model, we set the initials 
variables for certain variable before the use of the 
function, and those following result will depend on the 
output of currently vectors result, this is how this model 
work. As for malaria disease, infection rate should vary 
depending on the change of the climate condition and 
change of mosquito number. Applying the model to 
malaria disease, it does not support these changes, since it 
treats the infection rate as just a constant. The reason why 
for this study, is to analyze the influence of climate 
change on a reproduction of anophelines gambaie, 
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explores the sensitivity of infection late for malaria 
disease in Rwanda.  

II. METHODOLOGY 

A. Context 
This research focuses on climate effects on the 

sensitivity of a reproduction rate, a death rate, and an 
infection rate, focusing on a life cycle of mosquitoes 
based on the change of temperature and related to 
humidity. 

B. Setting 
Rwanda meteorology data for 2017 are applied to 

study the change in mosquitoes Reproduction base on the 
climate change variables where the temperature vary with 
the minimum equal to 10 and the maximum at 29 and 
related to humidity vary within the range of 30% – 97%. 

C. Stakeholders 
• Mosquito identification 

The used data were generated based on the climate 
variables. The mosquitoes’ birth rate took two values; it 
was 50 for the case either temperature or humidity was 
lower and, otherwise, it was 200. A study [4] have been 
conducted about the mosquitoes’ birth in some locations, 
one of which was in Rwanda, and it identified two 
mosquito types, 73.8% of which were culicine and 26.2% 
were anophelines. All anophelines were categorized into 
three, gambiae with 94.3%, Funestus with 0.4% and other 
anophelines with 5.3%. The most important one was the 
anopheline gambiae [4], the female mosquitoes 
responsible to distribute malaria disease among the 
population. 

• Human population 
In this study, the human was the second group that 

faces the risks of this disease like death. Web sites such 
World population review have been used to collect 
information about population changes in Rwanda, 
including the growth such as the number of born people 
(around 1,000), dead people (around 200) and the total 
number of people (12,636,816) reported day by day. 

III. MODEL 

A. A brief review of SI/SIR model 
An SIR model divides a population into three 

categories; Susceptible (S) that represents the population 
on the risk to get infected by the disease, Infected (I) that 
represents the infected population and Recovered (R) 
stands for the population recovered for the disease over 
the time. The model was built for spreading diseases such 
as Malaria, Dengue, and Ebola in order to forecast the 
result in the following year based on data of the current 
year [3], [9], [12]-[20]  

The employment of the model works for Malaria as 
other spreading diseases. Depending on target diseases, 
such as malaria, the model has been extended to support 
new variables to describe a spreading system of the 
disease. Since some mosquitoes are known to be the 

cause of Malaria spreading into the human population, 
new variables to describe them as an SI model that has no 
recovery for the mosquito with Malaria disease(Fig. 1).  

 
Figure 1.  SI/SIR model with a demonstration on how the βm and βh 

associate the interaction between mosquito and human. 

A combination of the original SIR model and the SI 
model has been used to analyze diseases spread [6] by an 
interaction between two species such as human and 
mosquitoes for Malaria. The following are the model’s 
equations (a prime mark denotes a derivative): 

 
S’m = ν M – (r  β’m  Sm  Ih) – δm  Sm 
I’m = (r  β’m  Sm  Ih) – δm  Sm 
S’h =  ν  h – (r  β’h  Sh  Im) – δh  Sh 
I’h = (r  β’h  Sh  Im) – δh  Sh – γh Ih 
R’h= γh  Ih 

TABLE I.  DEFINITION OF THE PARAMETER FOR THE  DIFFERENTIAL 
EQUATIONS 

Symbole Definitions 
 ν m The newborn rate for the mosquito 

 ν h The newborn rate for the human 

γh Human recovery rate 

δm The death rate for mosquito 

δh The death rate for human 

β’h The probability of mosquito to infect human 

β’m The probability for a human to infect the mosquito 

r Bitting rate of mosquito 

Sm Mosquito-size on the risk to get infected by the disease 

Sh 
The human population on the risk to get infected by the 
disease 

Im Mosquito-size infected by the disease 

Ih Human population size infected by the disease  

Rh Human population size recovered from the disease 

IV. MODIFICATION OF THE MODEL 

We used the SI/SIR model with additional variables, 
which are required to reflect climate effects. They 
included some ratio, such as an infection ratio (βm = r⋅ 
β’m  Ih and βh = r β’h Im), the probability of infection for 
the susceptible population, and a recovering ratio γh. In 
fact, through the introduction of these two is not novel, 
they have been considered as constants as the rates of 
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newborn (ν), death rate (δ). In our correction, we change 
βH, βM and νm depending on climates. 

To start using equations of the SI/SIR model, initial 
values must be set for all of the variables. Total number 
of mosquitoes used in the model equal to 340684 [4], 
with the Human size of 600000 estimated randomly, Sh is 
equal to human size (600000), in this case, everyone is 
considered to be on the risk to get infected, Sm is equal to 
340684, the size of mosquito. As an initial value, we set 
Ih=1 and Im=1. The test of the SI/SIR mode was 
conducted into two different ways. The first test was to 
analyse the change of SI/SIR with constant variables, 
such as newborn rate for both human (νh=0.024) and 
mosquito (νm=0.027871) and for infection rate for Human 
(βh=0.000005) and Mosquito (βm=0.000008), recovery 
rate for Human (γh=0.0033), death rate for both human 
(δh= 0.0067) and mosquito (δh=0.027871). With these 
initial variables, the output generated. 

Mosquito is known to be the cause of malaria disease 
into the population through a bite. This transmission on 
malaria from the human to another human cannot happen 
if there is no mosquito. Since the change in the number of 
mosquitoes should have something to do with the change 
of climate [6], [7], [8], [15] and [21] there should be 
some variables that control the number of mosquitoes. 
The candidates are temperature and humidity especially 
in the areas where there do not face winter season 

The generation of mosquito number was based on two 
conditions, related to the mean temperature, 20.2°C, and 
the mean humidity, 65.115% in Rwanda. With the range 
of mosquitoes, the number is between 50 to 200 
mosquitoes, the 50 mosquito’s birth will be generated 
when the temperature is lower or equal to the mean 
temperature with the humidity, which is lower or equal to 
the mean. In the case of 200 mosquitoes is when the 
temperature and humidity are higher than there mean 
values. 

We also need to take account of their life cycle: 
mosquitoes are considered to live for only three weeks 
and die on the twenty-first day [8]. This theory is used to 
evaluate the daily number of mosquitoes. We used the 
meteorology data for 2017 obtained from the institution 
in charge of meteorology in Rwanda. 

Counting the lifecycle of mosquito, they have to feed 
with the human or other animal’s blood to survive and 
reproduce. Once a mosquito bites, it has to stay resting 
for three days before the next bite. This is the process 
until the twenty-first days. Having the number of 
mosquitoes generated, this facilitates to get the number of 
the daily bites based on the population number and the 
mosquitoes ‘number. In our formulation, the bite is 
representing by r, which is a ratio of the number of 
available mosquitoes to the total number of the available 
population. The bite probabilities, or infection ratios βi (t) 
are given as the product of the bite rate r and initial 
probability for i to be infected (β’): 

βi (t) = r ∙ β’i        (i= h, m) 
where i represent the human and mosquito. In order to 

estimate βi (t), we firstly estimated the number of 
available mosquitoes based on the rule of mosquitoes’ 

new birth. After that, we applied it to the SI/SIR model 
with changing νM, which also follows the rule of the new 
birth. 

This analysis focused on the infectious mosquito type 
of anophelines gambaie, where 26.2% and anophelines 
mosquitoes where gambaie has 94.3% and this have been 
put into consideration during the analysis [4]. This 
change does not only affect infection rate only but also 
the newborn of the mosquitoes and the death rate. 

V. RESULT 

 
Figure 2.  Infection rates (βm(t)) for mosquito and Beta_H for human 

(βh(t)) year 2017. 
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Figure 3.  Variation of climate change variables (Temperature and 

Humidity) daily data for the year 2017. 

Fig. 2 shows the resultant daily changes of the 
infection rates of anophelines gambaie caused by 
temperature and humidity. It shows βh takes high value 
more than 0.2 from May to June ending (Fig. 3 shows the 
actual humidity and temperature used in the calculation). 
Fig. 4 and Fig. 5 show the time series variation of S and I 
for human with constant β (Fig. 4) and with time varying 
β (Fig. 5). These show that when the humidity decrease, 
the number of patients IH decreases and when the 
humidity increases the number of patients increases. This 
suggests how malaria incidences may change by the time 
in a year depending on the temperature and humidity, and 
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this shows how risk the disease will be depending on the 
season changing. 

The high sensitivity is caused by the new birth of 
mosquitos, which makes the biting rate to increase. 
Moreover, the infection rates are βm and βh in Fig. 2 
suggests they are sensitive to the humidity. This makes a 
change of the disease in the human population to increase 
in Fig. 5, especially during the period when the humidity 
is high and the infection rate is more than 0.2, specifically 
from May to June end. 
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Figure 4.  The result obtained from the SI model from Human by 

applying constant infection rate (βh). 
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Figure 5.  The result obtained from the SI model from Human by 

applying time depended on infection rate (βh (t)). 

VI. DISCUSSION OF THE RESULT 

In this section, we discuss the result of the analysis for 
the proposed mathematical model SI/SIR focusing on the 
infection rate (βi (t)) improvement. 

This climate change variable analysis proved an effect 
on the mosquito reproduction, especially during the rainy 
season [6], [7] and [8]. In the season, the increasing 
number of mosquitoes was much more than human, 
which increased the biting rate in the study. In addition, 
we assumed the product of the biting rate and the 
infection probability β’ gave infection rate, which 
represents the probability of infection to the human. The 
initial value of the infection rate of a year should be given 
by the last rate in the last year. The mosquito number 
increase makes a big effect on the infection rate to 
increase.  

Following the paper [4], we assumed the breakdown of 
the number of mosquitos was 26.2% for the anopheline 
and 94.3% of the 26.2% for anopheline gambaie, which 
was focused on in this study. We used it in order to focus 
on the risk of anopheline gambaie mosquitoes on human, 
as they are the main cause of the spreading of Malaria 

disease. The results of our analysis showed a link 
between the climate change especially humidity and the 
change of infection rate as is shown in Fig. 2. This makes 
an effect on the SI/SIR model, and results in the result 
shown in Fig. 3 and Fig. 5. 

Our version SI/SIR model is focusing on the 
improvement of the infection rate through the influence 
of climate change on the growth of mosquitos. Typically, 
the infection rate has been treated as a constant. Its result 
has been unsatisfactory because it does not reflect 
sensitivity to the variation of the climate as shown in Fig. 
4. In our theory, the new infection rate βi(t) is applied to 
the number of human on risk Sh combined with the 
infected mosquito size Im. Fig. 5 shows a graph of Sh 
responsive to the new time-dependent βi(t). It shows that, 
when the mosquito number is high, infection probability 
of the Sh can be also high. This leads that the larger βi(t) 
is, the more the humans on risk get infected. 

Mosquito reproduction affects human by spreading the 
disease. A new birth of mosquito determines daily bite 
rate of the mosquito to human. Fig. 5 shows the result 
obtained by the new infection rate based on time-
dependent value of anophelines gambaie mosquitos’ bites. 
This suggests the inflation of mosquito reproduction in 
the period where the humidity is more 80%. This is 
because we dealt with the birth rate is not constant in SI 
model for mosquitoes. Since the bite rate r is proportional 
to the number of mosquitoes and the number of mosquito 
increases exponentially under the conditions, the impact 
of the high birth rate during hot and high humidity season 
can accelerate the increase of mosquitoes and enhance the 
spread of infection. 

VII. CONCLUSION 

The model SIR was built to simulate epidemiological 
diseases. In this study, some variables that have been 
dealt as constants are regarded as time-varying variables 
depending on factors related to weather. The analyses 
focused on the mosquitos’ birth affected by temperature 
and humidity over the time. The bite ratios in the model 
were affected by this change. The simulation using the 
real climate data in Rwanda showed that the number of 
mosquitoes and the number of patients change 
exponentially mainly caused by humidity change. 

Since our simulation suggests the humidity has large 
impact on the mosquito increase and malaria patient 
increase, we will improve our model to forecast malaria 
disease in Rwanda based on the humidity data. 
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