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Abstract—  As a special occupation, Seafarers often face 
different working and living conditions compared to the 
terrestrial environment, so it is very important to explore 
the influence of maritime environment on seafarers' brain 
function. Based on the eight typical resting-state brain 
functional networks obtained by group independent 
component analysis, this paper adopt sliding temporal 
window and affine propagation clustering methods to deeply 
analyze the differences of dynamic functional connectivity 
between seafarers before and after sailing with those 
between seafarers and non-seafarers corresponding to these 
networks. The results show that the dynamic change among 
the eight brain functional networks between seafarers 
before and after sailing has obvious differences with those 
between non-seafarers and seafarers, which mean that the 
impact of marine environment on the seafarers' brain 
functional networks has certain timeliness. Some changes of 
the brain functional connectivity networks can be recovered 
within a certain period of time, while others may have long-
term effects on the connections between brain functional 
networks, so as to reorganize the topological relationship 
between brain functional networks and form the unique 
brain network biomarkers of seafarers, which has a great 
significance to explore the plasticity of seafarer's brain 
functional networks and the neural rules of sea-farer's brain 
functional activities. 
 
Index Terms—fMRI, dynamic functional connectivity, affine 
propagation clustering, brain network, seafarer 
 

I. INTRODUCTION 

As a newly emerging neuroimaging technology, 
functional magnetic resonance imaging (fMRI) has many 
unique advantages compared with other imaging 
technologies, and it has been fulfilled in various fields of 
brain research. The functional connectivity (FC) analysis 
based on resting-state fMRI as a mainstream 
neuroimaging method has been widely applied in the 
diagnosis and prediction of neurological diseases [1] and 
the cognitive neural mechanism of special occupations 
[2]. A common assumption used in these studies is the 
temporal stationary of FC, where the FC is measured over 
the entire time period. Therefore, the brain network 
information is assuming that the network model has the 
invariance of the human brain, and in constructing the 
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network model is to take the entire period of the human 
brain time series data to construct a static network [3]. 

Although the temporal stationary of FC provides a 
simple and convenient frame-work for us to examine 
large-scale brain networks and explore the correlation be-
tween functional and structural connectivity [4], [5]. 
However, the time series in fMRI data is usually not 
stability, so it is difficult to guarantee the premise of 
temporal invariant, and researchers have found that only 
considering static FC is not enough to explain the time-
varying and dynamic information interaction of brain 
network between different regions [6], [7]. Instead, the 
dynamic nature of FC should be studied to reveal the 
complex and changeable characteristics and mechanism 
of the brain network [8], [9]. Therefore, the research 
should consider the time-varying characteristics and 
construct a dynamic brain network when constructing the 
human brain network model, so as to better mine the 
information of the human brain network [10], [11]. 

In recent years, many studies have shown that the 
dynamic FC (DFC) analysis can provide a better study on 
the neurocognitive mechanism of special occupational 
groups, but there are also some problems and limitations. 
For example, Shen et al. investigated how the dynamics 
of resting-state FC are linked to driving behavior using a 
sliding window approach [12]. Shi et al. investigated 
dynamic functional connectivity among large-scale brain 
networks during resting state fMRI in relation to 
subjective well-being (SWB) in two large independent 
datasets [13]. 

As a special professional group, seafarers have 
different working conditions on the sea compared with 
those in terrestrial environment, which make the seafarers 
easy affected by the natural and working environments as 
well as many other complex factors, and leads to changes 
in the FC of seafarer's brain [14], [15].Therefore, it is 
very important to explore the influence of maritime 
environment on seafarers' brain. Recently, Wang et al. 
used a dynamic functional connectome characterization 
(DBFCC) model with the automatic target generation 
process k-means clustering to explore the functional 
reorganization property of resting brain states driven by 
long-term career experience in seafarers. The results 
reflected the functional plasticity only existed in the 
seafarers, which showed close relationships with the 
long-term career experience of sailors [16]. But there are 
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no studies that have taken into account the dynamic 
variation characteristics of fMRI brain functional 
networks, especially for the differences in the long-term 
and short-term effects of marine environment on 
seafarers' brain functional activities. 

In this study, the fMRI technology is applied to 
explore the impact of maritime environment on the brain 
functional networks of seafarer before and after sailing, 
as well as the differences compared with those of non-
seafarer. Particular, group independent component 
analysis (GICA) was used to obtain the brain functional 
networks of seafarer and non-seafarer groups, and then 
the sliding temporal window correlation was adopted for 
the DFC analysis between these brain functional 
networks. Next, the affine propagation clustering (APC) 
algorithm was used to extract the intrinsic dynamic 
functional states existed in the DFCs of seafarer and non-
seafarer groups. Through compared the results of seafarer 
before and after sailing with those of non-seafarer, the 
research identified the long-term and short-term effects 
caused by the special working and living conditions at sea 
on seafarers as well as their differences, which had a 
great significance to accurately explain and reflect the 
functional plasticity of seafarer's brain. 

II. MATERIALS AND METHODS 

A. Data Description 
The resting-state fMRI data of 33 seafarers before and 

after sailing were involved in this study, and all of them 
came from a shipping company of Shanghai. So there are 
a total of 66 fMRI dataset, which were divided into two 
groups. The data of seafarers before sailing was denotes 
presailor group, and the data of seafarers after sailing was 
denoted as backsailor group. Before the data acquisition, 
all the participants were informed about the purpose of 
this study and given the written informed consent in 
accordance with the Declaration of Helsinki. The fMRI 
data were acquired in the Shanghai Key Laboratory of 
Magnetic Resonance of the East China Normal 
University on a 3.0T scanner using a gradient echo planar 
imaging with 36 slices of whole-brain coverage and 160 
volumes, a TR of 2.0s and a scan resolution of 64×64. 
The in-plane resolution was 3.75×3.75mm2, and the slice 
thickness was 4 mm.  

The resting-state dataset was downloaded from the 
public neuroimaging database 
(http://www.nitrc.org/projects/fcon1000/), which was 
denoted as the healthy control group of non-seafarers. 
This dataset was released by Dr. James J. Pekar and Dr. 
Stewart H. Mostofsky, and included 23 healthy subjects 
in total. The fMRI data were acquired on a 3.0T scanner 
using a gradient echo EPI with 47 slices providing whole-
brain coverage and 123 volumes, a TR of 2.5 s and a scan 
resolution of 96×96. The in-plane resolution was 2.67 
mm × 2.67 mm, and the slice thickness was 3 mm. 

B. Data Preprocessing 
In the experiments, the fMRI data processing was 

performed using DPARSF software 

(http://rfmri.org/DPARSF) and custom code written in 
Matlab 2016a. The rigid body motion correction was 
performed to correct for subject head motion followed by 
slice-timing correction to account for timing differences 
in slice acquisition. Then the fMRI data were 
subsequently warped to a Montreal Neurological Institute 
(MNI) template and resampled to 2 mm3 isotropic voxels. 
Finally, the data was smoothed by Gaussian smoothing 
with a 4 mm full width at half maximum (FWHM). In 
addition, the time course of each voxel was variance 
normalized prior to perform GICA as this has shown to 
better decompose subcortical sources in addition to 
cortical networks. Furthermore, the location and display 
of these networks were assessed by using the MRIcro 
software (http://www.mricro.com).  

C. Dynamic Functional Connectivity Analysis 
In the field of fMRI data analysis, the simplest strategy 

for investigating DFC is to divide the time series into a 
set of time windows from different spatial locations 
(brain regions or regions), and then studying their 
pairwise connectivity in each time window. Subsequently, 
fluctuations in connectivity can be captured by collecting 
descriptive measurements of FC on a series of time 
windows, which is why the term dynamic FC was coined. 
Many methodological choices and extensions to this 
straightforward framework have been suggested, 
including in particular: (1) the choice of the most suitable 
window characteristics (length and shape) and alternative 
approaches to overcome window limitations; (2) different 
measures to assess FC inside the window; (3) how to 
extract interpretable information from the DFC patterns, 
either by assessing graph measures or by determining 
DFC states. Among them, sliding temporal window 
correlation analysis is the most classical DFC analysis 
method, which will be used in this study. 

D. Group Independent Component Analysis 
After preprocessing the fMRI data, functional data 

from both seafarer and non-seafarers groups were 
analyzed using spatial GICA framework, which was 
implemented by using the GIFT software (v2.0e) 
(http://mialab.mrn.org/software/) [17], [18]. Spatial ICA 
decomposed the fMRI data into linear mixtures of 
spatially independent components (ICs) with a unique 
time course profile, which included two dimensionality 
reduction steps. For the subject-specific data reduction 
step, principal component analysis (PCA) was used to 
reduce 120 time point data into 39, 160 time point data 
into 62 and 160 time point data into 63 maximum 
variability directions for non-seafarer, presailor and 
backsailor groups, respectively. Then the subject-specific 
reduced data were concatenated across temporal 
dimension and a group data PCA step reduced this data 
further into 26, 41 and 42 components for non-seafarer, 
presailor and backsailor groups along maximum group 
variability directions. The ICs were obtained from the 
group PCA reduced fMRI data using FastICA algorithm 
[19]. In particular, ICA algorithm was repeated 20 times 
in ICASSO to obtain reliable ICs [20], and minimum 
description length (MDL) was used to estimate the 
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number of ICs [21]. The aggregate spatial maps were 
estimated as the modes of component clusters. Subject 
specific spatial maps (SMs) and time courses (TCs) were 
obtained using GICA back reconstruction approach 
implemented in GIFT software. 

E. Sliding Temporal Window Analysis 
When obtained the ICs of each subject in the groups of 

non-seafarer, presailor and backsailor through GICA, 
eight typical resting-state brain functional networks 
(BFNs) of interest were selected using prior information 
for the following analysis, including visual network 
(VIN), default mode network (DMN), lateral visual 
networks (LVN), cognitive control network (CCN), 
working memory network (WMN), salience network 
(SAN), auditory network (AUN) and sensorimotor 
network (SMN), and these brain networks have also been 
reported in some previous literatures [22-24]. 

Next, the sliding temporal window correlation method 
was used to implement the DFC analysis between these 
BFNs for each group. The time courses corresponding to 
these eight BFNs were used to construct the DFC 
matrices according to the window width of 20TRs with a 
step-length of 1TR. The DFC matrix represents the 
Pearson correlation coefficient between each pairs of the 
corresponding time series of eight BFNs. Therefore, there 
were a total of 101,141 and 141 DFC matrices for the 
groups of non-seafarer, presailor and backsailor, 
respectively. 

Finally, the APC algorithm was used to extract the 
intrinsic DFC states from the DFC vectors corresponding 
to DFC matrices of all subjects in seafarer and non-
seafarer groups, where the DFC vector was obtained 
according to upper triangular elements of DFC matrix by 
row expansion, so that there were 11629 DFCs matrices 
in total. Six implicit DFC states were obtained, and a 
detailed statistical analysis of the DFC states between the 
groups of non-seafarer, presailor and backsailor was 
conducted. 

III. RESULTS AND ANALYSIS 

In this section, the results of DFC analysis between 
eight typical resting-state BFNs are presented, which 
obtained using GICA with APC on the non-seafarer and 
seafarer fMRI datasets, respectively.  

Figure 1 shows the eight resting-state BFNs and their 
corresponding MNI coordinates obtained by analyzing 
the brain functional connectivity of seafarers and non-
seafarers at the group-level using GICA. These BFNs 
included VIN, DMN, LVN, CCN, WMN, SAN, AUN 
and SMN, which are obtained with threshold |z| ≥ 2 after 
z-scored the ICs of GICA, as shown in (A)-(C) for non-
seafarer, presailor and backsailor groups, respectively. 

Figure 2 shows the six DFC states of the eight BFNs 
existed in the whole time series, which obtained using 
APC from the DFC vectors of all subjects in the groups 
of non-seafarer, presailor and backsailor. It can be seen 
from the figure that state 3 and state 4 are similar to each 
other in BFNs except for their different FC strengths, but 
they differ significantly from state 1, state 2, state 5 and 

state 6. Thus, it is confirmed that the eight BFNs in this 
study are indeed in dynamic change during the whole 
time series, presenting different FC states. 

 
Figure 1.  The eight resting-state BFNs of VIN, DMN, LVN, CCN, 

WMN, SAN, AUN and SMN, which are shown in (A)-(C) for the 
groups of non-seafarer, presailor and backsailor, respectively. The 

spatial maps of these BFNs are obtained with threshold |z| ≥  2 after z-
scored the ICs of spatial ICA. 

 
Figure 2.  The six DFC states of the eight BFNs obtained from the 
DFC vectors of all subjects in non-seafarer, presailor and backsailor 

groups, as well as the number of DFC vectors contained in each state for 
each group. 
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Meanwhile, the number of DFC vectors obtained in 
each DFC state for the three group subjects is also 
presented, respectively. Although the number of DFC 
vectors contained in each state is different between non-
seafarer and seafarer groups, it cannot be judged that 
there is a difference between them in this state. This is 
due to the reason that the length of time series in fMRI 
data corresponding to seafarers and non-seafarers is 
inconsistent, so the number of DFC vectors is not the 
same in different groups under the condition of the same 
window width. In particular, when the window width of 
20TRs with a step size of 1TR was used in this study, the 
number of DFC vectors corresponding to the groups of 
non-seafarer and seafarer were 2323 and 4653, 
respectively. Therefore, it is impossible to judge whether 
there are differences between them directly from the 
number of DFC vectors contained in the state, which 
requires further detailed analysis, as shown in Figure 3. 

 
Figure 3.  The comparison of the ratio of DFC vectors included in each 

DFC state among the three groups of non-seafarer, presailor and 
backsailor. 

 
Figure 4.  The average state transition probability diagram for the 

groups of non-seafarer, presailor and backsailor, which are shown in 
(A)-(C), respectively. Note that transition probability is color-mapped 

on a log-scale. 

Figure 4 presents the average state transition 
probability diagram of the six DFC states existed in the 
eight BFNs for the non-seafarer, presailor and backsailor 
groups, as shown in (A)-(C). It can be seen from the 
figure that all of the states remain in their own state 
except for state 1. Among them, each group of subjects 
had a long existence on state 5 and state 6, which is 
consistent with the fact that they remain in their own state 
for a long time. While the transition probability is low 
between different states, and the big one is the transition 
between state 5 and state 6. It further indicates that this 
two DFC states are the main survival state of these eight 
DFNs in the whole time process, which needs to be paid 
more attention. 

IV. CONCLUSIONS AND DISCUSSION 

In this study, the GICA and sliding temporal window 
correlation analysis with APC was used to explore 
dynamic variation differences among eight resting-state 
BFNs in non-seafarer and seafarer groups. The results 
showed that the dynamic changes of seafarers' eight 
BFNs between before and after sailing are obviously 
different from those between non-seafarers and seafarers, 
which mean that the influence of maritime environment 
on seafarers' brain functional networks can be divided 
into short-term and long-term. Short-term effects can be 
recovered within a certain period of time, while long-term 
effects can reorganize the connections between BFNs and 
may be form unique plasticity biomarkers corresponding 
to the occupational group of seafarers. 

In this paper, the sliding temporal window method is 
used to divide the time series in fMRI data and construct 
the DFC matrix, in which the window width is a very 
important factor. Based on the previous studies that have 
shown that cognitive states could be correctly identified 
on 30-60s [25], the window width of 40s corresponding 
to 20TRs with sliding in a step of 1 TR was used in our 
study, which was applied to divide the time series of each 
brain network into 101, 141 and 141 windows for non-
seafarer, presailor and backsailor groups, respectively. In 
addition, the APC was used to extract the DFC states 
from the DFC vectors which concatenated DFC matrices 
across all subjects. Compared with the k-means algorithm 
used in the traditional method, it does not need to 
determine the number of clusters. Feature weighting and 
sample weighting are considered in this clustering 
algorithm and the cluster number is automatically set by 
using the cluster validity index to finish clustering. 

According to the comparison of the DFC results 
among the eight resting-states BFNs between seafarers 
before and after sailing with those between seafarers and 
non-seafarers, it can be found that the effects of the 
marine environment on the seafarer's BFNs are time-
sensitive. Some changes can be recovery in a certain time, 
while others may be have long-term effects on the BFNs, 
thus forming some unique professional brain plasticity 
biomarkers. In the following research, we will obtain 
more data to analyze the changes of dynamic brain 
functional connectivity networks between seafarers 
before and after sailing with those between non-seafarers 
and seafarers in a more in-depth way. 
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