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Abstract—In order to model organ deformation precisely, 
we extract numerous feature points and also their mapping 
correspondences from two layered two-dimensional Digital 
Imaging and Communications in Medicine (DICOM) 
images. In this study, we first selected the same image twice 
(the 68th image) from 124 layered two-dimensional DICOM 
images, and then two consecutive images (the 68th and 69th) 
and two that were far apart (the 55th and 80th). Next, two-
dimensional feature points were extracted from these 
images, and their mapping was searched. We utilized the 
two-dimensional image feature point 
extraction/correspondence algorithms scale-invariant 
feature transform (SIFT), KAZE, Accelerated KAZE 
(AKAZE), and oriented FAST and rotated BRIEF (ORB) 
from OpenCV with real DICOM files to confirm that the 
aforementioned extraction and mapping was possible. 
According to our results, although the method for searching 
for matches by only looking for similar feature points in the 
vicinity of a certain feature point required slightly more 
calculation time than the method of looking for matches 
across the entire DICOM area, in the end it did decrease the 
number of mistaken matching correspondences. 
  
Index Terms—DICOM, OpenCV, Python, feature points, 
KAZE, AKAZE, ORB, SIFT, cranium 
 

I. INTRODUCTION 

The brain is the most important organ in the human 
body, and it has many regions that must remain uninjured 
for a person to have a good quality of life (QOL). If the 
brain does inadvertently become injured, then 
complications or sequelae may develop. Furthermore, the 
boundaries between normal and abnormal regions are 
difficult to determine, and sequelae can develop if a 
surgeon goes too far when removing malignant tumors, 
while conversely the patient survival rate decreases when 
too much of a malignant tumor is left behind. 

In light of this, we must be able to deftly handle brain 
shifts that occur during surgery on the brain. A brain shift 
is a phenomenon in which the brain deforms as it sinks 
toward its base when spinal fluid is lost after a 
craniotomy or gravity acts upon the brain. During a 
neurosurgical procedure, this results in intraoperative 
changes in the location, position, and form of malignant 
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tumors, cerebral thrombosis, cerebral infarctions, and 
other regions shown in preoperatively produced Digital 
Imaging and Communications in Medicine (DICOM) 
files. 

 

 
Figure 1. Numbering of two-dimensional DICOM images. 

 

 
Figure 2. Some of the 124 layered two-dimensional images. 

While the ultimate goal of this study is to model these 
brain shifts, in order to produce the basic data to achieve 
this numerous feature points were extracted from DICOM 
files and mapped into two two-dimensional DICOM 
images (Fig. 1 and Fig. 2). If matches are determined 
between preoperative and postoperative DICOM files, 
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which is not carried out in this study, then it should be 
possible to identify which areas of the brain are deformed 
and by how much during the process of surgery. Using 
this information, our future plan is to utilize a large 
amount of matching data in order to successfully model 
brain shifts (i.e., identify the rheological parameters of 
regions such as malignant tumors, thrombi, blood vessels, 
and nerves), calculate brain shifts by inputting the area of 
an incision that will be monitored during surgery, and 
display visualizations of this for physicians [1]-[7]. 

The rest of this paper is organized as follows: Section 
2 describes our software and data used in this research. In 
section 3, we explain four kinds of 
extraction/correspondence algorithm for layered two-
dimensional image feature points. Then in section 4, we 
show results of experiments with brain DICOM files. 
Finally, a discussion of the study is provided in section 5. 

II. SOFTWARE AND DATA 

This chapter will describe the software employed in 
this study. 

A. OpenCV 
OpenCV (Open Source Computer Vision) is an open 

source computer vision library. It offers a variety of 
functions required to process images and videos on a 
computer, and can be used for both academic and 
commercial purposes, as it is distributed on a BSD 
license. In addition, one of its distinguishing 
characteristics is that it can be employed in a wide variety 
of situations, because it is compatible with multiple 
platforms.  

B. Python 
Python is a highly functional and extremely dynamic 

programming language, which is utilized in applications 
in a variety of fields. It is often compared to languages 
such as Java. It has a high-level, dynamic data types, and 
its procedural code makes the syntax very easy to read. 
Furthermore, it can be used in a wide range of operating 
systems such as Windows, Linux, and Mac. 

C. DICOM 
DICOM refers to a format of medical imaging taken 

with computed tomography (CT) or magnetic resonance 
imaging (MRI). It is a standard that defines 
communication protocols between medical imaging 
equipment, which was developed by the American 
College of Radiology and the National Electrical 
Manufacturers Association. After an image is taken, it is 
saved in BMP format on a server in a lossless or lossy 
format. 

III. EXTRACTION/CORRESPONDENCE ALGORITHMS FOR 
LAYERED TWO-DIMENSIONAL IMAGE FEATURE 

POINTS 

What is generally desired from Simultaneous 
Localization and Mapping (SLAM), which is utilized 
with robots and cameras that move freely in three-
dimensional environments, is the brightness, scale, 

rotation, and affine invariance of feature quantities in 
two-dimensional images. However, in a patient's layered 
two-dimensional DICOM files, everything other than the 
brightness remains virtually unchanged. In addition, 
using the cranium and incision as landmarks, the scale 
and rotation in multiple DICOM files from the same 
patient can easily be aligned using Visualization Toolkit 
(VTK). 

The brightness varies according to the CT or MRI 
imaging parameters and the type of contrast dye. 
Accordingly, imaging is carried out using imaging 
parameters and contrast dye that allow for a consistent 
spread of feature point groups throughout the organ. In 
addition, when the brightness differs from that of the 
same patient's past DICOM files in the brain database, 
they will be normalized using VTK. OpenCV has been 
used to research algorithms such as scale-invariant 
feature transform (SIFT), KAZE, Accelerated KAZE 
(AKAZE), and oriented FAST and rotated BRIEF (ORB) 
[8]-[11], which are defined below, for use as 
extraction/correspondence algorithms for layered two-
dimensional image feature points (Fig. 3). 
 

 
Figure 3. Feature points extracted from an actual patient's two-

dimensional DICOM slice images. 

A. AKAZE 
AKAZE is an improved version of the KAZE 

algorithm. It employs a unique form of description called 
the Modified-Local Difference Binary (M-LDB). The 
scale space produced by the Gaussian filter (linear 
dispersion filter) used in SIFT and SURF is isotropic. 
This causes the edges of objects to become blurred, and 
local characteristics always be picked up properly. In 
order to resolve this issue, nonlinear and anisotropic scale 
space is utilized. 

B. KAZE 
KAZE is a feature quantity named after the Japanese 

character for wind, which is calculated using a nonlinear 
dispersion filter. Compared to SURF and SIFT, it 
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powerfully detects changes in objects such as expansions, 
reductions, and rotations. Although Gaussian filters 
generally stand up well against noise, their disadvantage 
is that they erase feature quantities in flat regions owing 
to image smoothing. KAZE is useful in many situations, 
because it can eliminate noise while preserving feature 
quantities in flat regions. 

C. ORB 
ORB, is an alternative to SIFT and SURF that can be 

freely employed, because it has not been patented. It 
combines a FAST key point detector and a BRIEF feature 
descriptor. Key points are detected using FAST, and the 
Harris corner scale is used to narrow down these 
candidates to the top N items. In addition, an image 
pyramid is used to generate multiscale features. For 
feature point matching, a multi-probe locality-sensitive 
hashing (LSH) is utilized, which is an improved version 
of the existing LSH. ORB is considerably faster than 
SURF or SIFT. The ORB descriptor performs better than 
SURF, and ORB is a good choice for tasks such as 
creating panoramic images with equipment that is not 
highly functional. 

D. SIFT 
SIFT is able to pick up feature points as usual, even 

when affected by lighting or in the presence of an 
expansion, reduction, or rotation. Some of its primary 
uses are to ascertain minute features and produce 
panoramic pictures. This is why SIFT stands up well 
against changes in brightness, scale, and rotation, where 
changes in scale are recognized using the difference of 
Gaussians DoG on 26 dimensions, rotational changes are 
recognized using adjacent voxels and threshold 
processing, and brightness changes are recognized by the 
normalization of feature vectors (128 dimensions). 

Finally, when an octree or similar is utilized to process 
a DICOM file through binary space partitioning, the 
feature point correspondence between DICOM files 
moves from a full search to partial search to be completed. 
In general, in organ deformation three-dimensional 
feature points only move within the area surrounding 
them, making it unnecessary to perform a full search 
using SLAM or PTAM with robots or cameras that can 
move freely in three-dimensional environments. In 
addition, searches of each layer region can be conducted 
through parallel processing with GPGPU multi-cores, and 
although this has not yet been implemented, it will 
provide a method of further speeding up the processing.  

IV. RESULTS OF EXPERIMENTS WITH BRAIN DICOM 
FILES 

A brain shift is the situation in which, after a 
craniotomy in a neurosurgical procedure, spinal fluid is 
lost and the brain sinks owing to the effect of gravity. 
This causes discrepancies between DICOM files 
produced preoperatively and the actual lesion sites to be 
operated on, leading to a marked drop in surgical 
accuracy when DICOM files are used in the removal of 
malignant tumors. 

In this chapter, we first verify the method of extracting 
feature points from one layered two-dimensional DICOM 
image in the order of the strongest similarity with the 
feature points in the other layered two-dimensional 
DICOM image. Next, because a normal layered two-
dimensional DICOM image contains few feature points 
around the periphery of or within the brain, and exhibits a 
bias towards these locations, the Canny edge detection 
algorithm and a Sobel-filter edge detection algorithm are 
utilized to generate a large number of feature points 
across a wide area of the brain DICOM file. Then, these 
are employed to select pairs from the 124 layered two-
dimensional DICOM images in a combined manner, 
including pairs with the same image twice, and the pair 
with the maximum number of mapped feature points is 
determined. This process automatically extracts regions 
in which brain shift has occurred. If two images with the 
same number have the maximum amount of mapped 
points, then we know that brain shift has not occurred. 
Conversely, if the pair with the maximum number of 
mapped points consists of images with different numbers, 
then we know the location where brain shift has occurred. 
Finally, the two-dimensional image feature point 
extraction/correspondence algorithms SIFT, KAZE, 
AKAZE, and ORB are utilized to extract and create 
correspondences between feature points from total and 
local searches, and the required calculation time, number 
of feature points extracted, and number of points mapped 
for the two searches are compared. 

A. Feature Point Extraction Using AKAZE, and 
Matching of Those Points  

Here, we first used the feature point 
extraction/correspondence algorithm AKAZE to extract 
the top 10 most similar feature points to feature point A 
in one image (Fig. 4(a)). Then, from those 10 feature 
points we selected the one in the most similar position to 
feature point A as the nearby feature point (Fig. 4(b)). 

 

 
Figure 4. (a) DICOM image’s top 10 feature points in terms of the 

similarity to feature points in another DICOM image. (b) Feature points 
among the top 10 most similar points that are near their original 

positions. 
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Figure 5. (a) Original DICOM image feature point grouping. (b) 

Image of Canny edge extraction from original DICOM image. (c) Image 
of Sobel-filter at extraction from original DICOM image. 

 
Figure 6. (a) Feature points from Canny edge detection (total 1,398 
points). (b) Feature points from Sobel-filter edge detection (total 924 

points). 

In the original layered two-dimensional DICOM image, 
the number of feature points that appear is insufficient, 
and the points are scattered rather than appearing over a 
wide range in the brain (Fig. 5(a)). To resolve this 
problem, we applied the Canny edge detection algorithm 
and a Sobel filter to the layered two-dimensional DICOM 
image to produce a large number of edges, and feature 
points were generated from these (Fig. 5(b), (c)). As 
shown in Fig. 5 and Fig. 6, this edge detection method 
solidly increased the number of feature points, and spread 
those points across a wide area (Fig. 6). 

B. Mapping in Original Layered Two-Dimensional 
DICOM Images and the Maximum-Number Pair  

Here, the feature points of the original layered two-
dimensional DICOM images are extracted, these points 
are mapped, and the pair of images that produces the 
maximum number of mapped points is identified. As 
shown in Fig. 7, the original number of feature points is 
small, meaning that the number of map points is also 
small. Furthermore, mapping is biased toward the 
periphery of the brain, and not many points appear within 
the brain, which is where they are needed to detect brain 
shifts. We can interpret this as meaning that it is not 
possible to detect brain shifts using the original layered 
two-dimensional DICOM images as they are. 

 

 
Figure 7.  (a) Mapping set for original layered two-dimensional 
DICOM images. (b) Number of paired, layered two-dimensional 

DICOM images that produce the maximum number of map points. 

C. Mapping in Layered Two-Dimensional DICOM 
Images Processed with Canny Edge Extraction 
Algorithm and the Maximum-Number Pair 

Here, we extracted mapping sets and the numbers of 
the pair of images with the maximum number of points 
mapped from the layered two-dimensional DICOM 
images processed using the Canny edge extraction 
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algorithm. First, Fig. 8 (a), (b), and (c) present the results 
of matches taken from the pairings of number 68 and 
number 68, number 68 and number 69, and number 55 
and number 80 from the 124 two-dimensional DICOM 
images. These results reveal that the number of feature 
points and the number of mapped points is far higher in 
images with edge detection than in the original images, 
and that these points appear across a wide area: not only 
around the periphery of the brain but also within it. Next, 
image pairs were selected from the 124 images, including 
pairs that contained images with the same number, and 
the pair with the maximum number of matches was 
extracted (Fig. 8(d)). These results show that image pairs 
with the same number had the highest number of matches. 

 

 
Figure 8. (a), (b), and (c) Results of matches taken from the pairings of 
number 68 and number 68, number 68 and number 69, and number 55 

and number 80 from the 124 two-dimensional DICOM images 
processed with the Canny edge detection algorithm. (d) The pair with 
the maximum number of matches when pairs were selected from the 

124 images, including pairs that contained images with the same 
number. 

 
Figure 9. (a), (b), and (c) Results of matches taken from the pairings of 
number 68 and number 68, number 68 and number 69, and number 55 

and number 80 from the 124 two-dimensional DICOM images 
processed with the Sobel-filter edge detection algorithm. (d) Pair with 
the maximum number of matches when pairs were selected from the 

124 images, including pairs that contained images with the same 
number. 

D. Mapping in Layered Two-Dimensional DICOM 
Images Processed with the Sobel Filter and the 
Maximum-Number Pair 

Here, the mapping and maximum-number pairs were 
reproduced in the layered two-dimensional DICOM 
images processed with the Sobel filter. First, Fig. 9 (a), 
(b), and (c) present the results of matches taken from the 
pairings of number 68 and number 68, number 68 and 
number 69, and number 55 and number 80 from the 124 
two-dimensional DICOM images. These results reveal 
that the number of feature points and the number of 
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mapped points is considerably higher in images with edge 
detection, and that those points appear across a wide area: 
not only around the periphery of the brain but also within 
it. Next, pairs were selected from the 124 images, 
including pairs that contained images with the same 
number, and the pair with the maximum number of 
matches was extracted (Fig. 9(d)). These results show 
that image pairs with the same number had the highest 
number of matches. 

TABLE I.  CALCULATION TIME, NUMBER OF EXTRACTED FEATURE 
POINTS, AND NUMBER OF POINTS MAPPED FOR A FULL SEARCH AND 

VICINITY SEARCH OF DICOM FILES USING THE FEATURE POINT 
EXTRACTION/CORRESPONDENCE ALGORITHMS SIFT, KAZE, AKAZE, 

AND ORB 

Algorithm SIFT ORB KAZE AKAZE 
Full search 

(processing time 
[seconds]) 

0.34 0.01 0.82 0.18 

Vicinity search 
(processing time 

[seconds]) 
0.70 1.03 0.98 0.39 

Difference in 
search time for 
both searches 

(seconds) 

-0.36  -1.02  -0.16  -0.21  

Number of feature 
points in image 1 

(points) 
450 500 162 198 

Number of feature 
points in image 2 

(points) 
472 500 190 226 

Number of 
mapped points 
(full [points]) 

274 291 112 151 

Number of 
mapped points 

(vicinity [points]) 
192 352 106 143 

Difference in 
number of 

mapped points 
(points) 

82 -61 6 8 

 

E. Comparison of Calculation Time, Number of 
Extracted Feature Points, and Number of Points 
Mapped for a Full Search and Vicinity Search Using 
the Feature Point Extraction/Correspondence 
Algorithms SIFT, KAZE, AKAZE, and ORB 

Here, the two-dimensional image feature point 
extraction/correspondence algorithms SIFT, KAZE, 
AKAZE, and ORB were utilized to extract and create 
correspondences between feature points from total and 
local searches, and the required calculation time, number 
of extracted feature points, and number of mapped points 
were compared. As shown in Table 1, we learned that 
vicinity searches, which require the vicinity to be checked, 
required more time to calculate than full searches, which 
do not. This was true for all algorithms. Furthermore, for 
the algorithms SIFT, KAZE, and AKAZE the vicinity 
searches eliminated mistaken correspondences, 
decreasing the number of mapped points. However, for 
the ORB algorithm, the vicinity search extracted more 
mappings than the full search using one-way 
confirmation (feature points b1 through b10 in the two-
dimensional DICOM image B are selected in order of the 

strongest similarity with feature point ai in the two-
dimensional DICOM image A, and among these the point 
located closest to feature point a is selected as bi and 
matched) or two-way confirmation (the feature point in 
the two-dimensional DICOM image B with the strongest 
similarity to the feature point a in the two-dimensional 
DICOM image A is selected as feature point b, and then 
the feature point in the two-dimensional DICOM image 
A with the strongest similarity to feature point b in the 
two-dimensional DICOM image B is selected as feature 
point a, and there is determined to be a match if a=a’). In 
terms of the confirmation accuracy, this is because one-
way confirmation is less strict than two-way confirmation. 

 

 
Figure 10. Results of feature-point mapping in the vicinity search with 

AKAZE. 

Finally, Fig. 10 presents the results of feature-point 
mapping in a vicinity search, while Fig. 11 shows the 
same for a full search. Fig. 12 presents the results of 
feature-point mapping for the vicinity search with ORB, 
while Fig. 13 shows the same for a full search. 

 

 
Figure 11. Results of feature-point mapping in full search with AKAZE. 
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Figure 12. Results of feature-point mapping in vicinity search with 

ORB. 

 
Figure 13. Results of feature-point mapping in full search with ORB. 

V. CONCLUSIONS 

This study used layered two-dimensional DICOM 
images from an actual patient to conduct basic 
experiments for identifying brain shifts. First, numerous 
feature points scattered on the surface of and within the 
brain in two-dimensional DICOM images were extracted, 
and the number of these points that are mapped was 
investigated by selecting pairs of 124 images. The results 
showed first that pairs with the same number had the 
highest number of mapped points. This indicates that a 
brain shift has not occurred in the DICOM file. If 
preoperative and postoperative DICOM files were to be 
used, then pairs with different numbers should have the 
highest numbers of mapped points, and it should be 
possible to estimate the location at which a brain shift 
occurs from the shape of the graph. 

Next, we learned that in the original two-dimensional 
images, the number of feature points inside the brain was 
small. To improve this, we employed the Canny edge 
detection algorithm and a Sobel-filter edge detection 
algorithm to generate a large number of edges in the 
original two-dimensional images. As a result, we 
prepared a huge number of feature points around and 
inside the brain in the two-dimensional DICOM images. 
Then, we employed this result to map feature points in 
two copies of the same image (the 68th image), two 
consecutive images (the 68th and 69th), and two images 
that were far apart (the 55th and 80th). With these results, 
we produced a large number of mapped points, not only 
on the surface of the brain but also within it, and 
confirmed for all pairs that pairs of images with the same 
number produced the largest number of mapped points. 

Finally, we used the feature point 
extraction/correspondence algorithms SIFT, KAZE, 
AKAZE, and ORB to study calculation time, number of 
extracted feature points, and number of points mapped for 
a full search and vicinity search of the DICOM files. In 
terms of the calculation time, the more difficult it was to 
calculate the distance, the longer the calculation time 
became for vicinity searches compared to full searches. 
Next, the fewer mistaken correspondences there were, the 
lower the number of matches for vicinity searches were 
compared to full searches when using the algorithms 
SIFT, KAZE, and AKAZE. However, as described in the 
previous chapter, the determination of matching is 
different in vicinity searches and full searches, and 
because determination is less strict in the former than in 
the latter vicinity searches only exhibited more matches 
than full searches when using the ORB algorithm. 
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