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Abstract—Algorithms for model predictive control as well as 
mathematical models themselves need effectiveness 
evaluation. In the work are considered physiological, neural 
network based and empirical models, their special aspects 
and methods of approbation. DirecNet open-access database 
clinical protocols were processed and used for empirical 
sigma-model based algorithm tests. The general concept of 
developed short-term prediction algorithm based sigma-
model is to compare the measured and the modeled BG. 
Processing this data the algorithm generates its outputs and 
performs further BG prediction. The DirecNet data allows 
providing effective prediction algorithm and empirical 
mathematical model evaluation. Primary tests show that 
sigma-model based algorithm is unsusceptible to patient 
physiological quasi-constant parameters variability and is 
susceptible to noise level. Relative deviation of prognosis 
with added 25% normal noise is less than 20%. 
  
Index Terms—diabetes mellitus, closed-loop system, blood 
glucose prediction, mathematical model, approbation 
 

I. INTRODUCTION 

Diabetes mellitus is widespread endocrine disease that 
occurs when pancreas is no longer available to produce 
enough insulin and characterized by chronic increase of 
blood glucose concentration (BG).  

Nowadays the most widely used method for diabetes 
mellitus type I compensation is pump insulin therapy 
based on on-time exogenous insulin infusion. 

The closed-loop system for blood glucose level control 
based on insulin pump combined with glucose meter may 
improve efficiency of insulin therapy and enable to 
compensate diabetes automatically. The key part of such 
a system is a feedback on blood glucose dynamic 
prediction performed by corresponding algorithms. 

Bioengineering system comprised of portable closed-
loop system and a patient is to provide high accuracy and 
reliability of blood glucose dynamic prediction. Moreover, 
it is highly important to achieve the best operation of 
algorithms as a part of portable device software, proper 
functioning in a processing unit. 
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Prediction algorithms are based on mathematical 
models, describing blood glucose dynamic. Approbation 
of algorithms and models is a nontrivial task due to their 
complexity and mathematical nature. 

Blood glucose mathematical models may be divided 
into three main groups depending on their basic 
principles: 

1) physiological models; 
2) neural networks based models; 
3) empirical models. 

Physiological models [1]-[4] usually are based on 
ordinary differential equations taking into account a lot of 
physiological parameters. The goal of such models is the 
highest correspondence to real physiological human 
processes. However, they may not be able to perform 
accurate long-term prognosis, because it can not to take 
into account a number of processes and long-term 
variability of physiological constants. Besides, 
complicated high order differential equations generally 
use immeasurable parameters, which are also variable for 
different patients. 

Models based on neural networks [5]-[8] are aimed at 
the most accurate prediction without a strict description 
of physiological processes. The most accuracy is 
achieved by feedback and continuous education. 
However, the main disadvantage of the neural networks is 
an unknown and hardly predictable process of prognosis 
construction. That makes this type of models less 
sufficient and reliable as a part of the closed-loop system. 
It stands to mention that neural networks models are 
learning and operates well with one particular patient and 
need reeducation for different patients. Moreover, using 
neural networks in firmware is rather complicated 
because it demands high resources of the processing unit.  

Taking into account all disadvantages of previously 
described model types we suggest another model type – 
empirical models. Their goal is to build the accurate 
prognosis by crisp logic. Empirical models [9], [10] are 
physiologically independent, because they take into 
account mainly constant physiological parameters and are 
not oriented to repeat real physiological (human) 
processes. They don’t need the feedback and may use 
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neural network only for education. Empirical models also 
should be reeducated or calibrated for different patients, 
but it takes much less time and computing power in 
comparison with neural networks based models. 
Therefore, using such models as a base for prediction 
algorithm allows providing sufficient high accuracy and 
reliability of the closed-loop system with simple 
mathematical base. 

The main task of blood glucose dynamic prediction 
applicable for mentioned bioengineering system is to 
exclude (minimize) hypoglycemia and longtime 
hyperglycemia in patients with diabetes mellitus type I. 
Therefore, the empirical model is more relevant to use in 
bioengineering system of the portable closed-loop system 
and a patient. 

II. MATERIALS AND METHODS 

A. Approbation Methods 
Let us consider main methods for mathematical models 

and algorithms on its basis approbation: 
1) virtual data; 
2) real data from databases; 
3) real data based on clinical trials. 
Virtual data (virtual patient) is available and 

convenient way to approbate the developed model. 
However, it is based on the mathematical model itself 
that gives the method some disadvantages.  First of all, 
the base model used in virtual patients may have its own 
errors or deviations in modeling. Additionally, it uses 
unknown physiological parameters that are difficult to 
take into account. Finally, it makes only identical model 
with similar structure and parameters to show the best 
results during approbation.  

Nowadays, one of the most widely used virtual data 
based methods for mathematical models and prediction 
algorithms approbation is the in silico system [11], [12]. 
The system of virtual patients is realized in special 
software that is certified by FDA. 

Real data methods are based on models approbation by 
using daily BG tracks. These methods are divided into 
ones based on clinical trials and data from databases. 

Clinical data capture provides highly accurate and 
reliable information about a real patient BG dynamic. 
Furthermore, it allows receiving all essential 
physiological parameters performing necessary 
investigations. The main disadvantage of the method is 
data capture complication and low availability. Besides, 
incorrect operation of data receiving devices and human 
factor may have influence on received data and cause 
errors. 

Databases are the most available and simple method 
for getting real patient data. Although it provides less 
essential data then clinically captured one, it is 
sufficiently accurate and reliable for model approbation. 
However, data from databases may be incomplete and 
unsorted and demand processing to make it more 
convenient to use. As database information is received 
the same way as clinical data, it also may be influenced 
by human factor or device errors. 

Nevertheless, being the most available and enough 
accurate real data source, databases are the most relevant 
methods for mathematical models approbation, especially 
empirical ones. 

B. DirecNet Database  
DirecNet is an available wide database of clinical trials 

of patients with diabetes mellitus [13]. This database 
includes not only BG dynamic data, but also information 
about factors affecting it: food intake, insulin infusion, 
physical activities.  

Information from DirecNet is unprocessed and is 
presented in protocols as it has been collected from 
glucose meters and sensors. Tracks may include incorrect 
values of BG monitors and are difficult to analyze 
without additional processing. 

For that end, special software was developed in Matlab. 
The software consists of two programs: processing and 
visualization programs.  

The former provides DirecNet data structuring. Initial 
information about trials includes a protocol file about 
measuring parameters and conditions and one table-file 
with all measurements results for all patients. The 
processing program allows dividing all this data in 
separate tables with information about one parameter for 
one patient. Once performed, the processing provides 
more convenient analysis of presented data.  

As a result BG tracks for all patients were formed, 
third part of which had incorrect information (rapid long-
term BG level deviation near physiological limits and 
constant BG value during long time). Such tracks were 
excluded from the resulting set of data. 

Finally, the processing program combines daily BG 
tracks got from different glucose meters obtained with 
different frequency. Glucose meters data were adjusted 
with the meters accuracy. As reference points clinical 
blood count data were used. Mean track was interpolated 
using data from fingerstick meters (FreeStyle Flash and 
OneTouch Ultra) and constant glucose monitor (CGMS) 
with discretization period of 5 minutes. Combined track 
are more accurate and have the highest discretization (Fig. 
1). In further researches these tracks were used as ideal 
reference tracks.  

 

 
Figure 1.  Combined track of One Touch Ultra, FreeStyle Flash and 

CGMS Medtronic MiniMed BG meters. 

Then, visualization program made as a graphical 
interface combines final track with food intake and 
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insulin infusion data. Developed interface allows 
graphical data visualization with comfortable parameter 
control (Fig. 2).  

 

 
Figure 2.  Graphical interface for BG tracks visualization. 

C. Short-Term Prediction Alrorithm 
Developed short-term prediction algorithm is based on 

improved empirical Sigma-model presented in [14]. The 
model is based on logistic function or sigma-function. 
That is why it is called sigma-model. The model 
describes BG dynamic taking into consideration food 
intake and insulin infusion data and assumes that glucose 
dynamic is strongly connected to regulation of insulin, 
amylin, epinephrine and glucagon. Ascents of BG are 
mainly caused by food intake as well as glycogenolysis 
and gluconeogenesis activated by glucagon and 
epinephrine. Descents of BG are caused by glycolisys and 
glycogenesis activated by insulin and amylin. 

The general concept for algorithm is to compare two 
data sets – the measured BG and the modeled BG. 
Processing this data the algorithm generates its outputs 
and performs further BG prediction. 

At the start of the algorithm the initial prediction point 
is defined, that is the state after the closed-loop system is 
powered on or recalibrated. After the patient enters 
meal/insulin data or bolus insulin data is received from 
the pump the model is recalculated, thus recalculates the 
prediction. It is also done if no data events happen but the 
prediction time interval passed. Summing up there are 
several points for prediction renewing: powering on the 
closed-loop, its recalibrating, meal data from the patient 
and insulin data from either the patient or the insulin 
pump. 

After the prediction is done, several levels are built: a 
large interval and a small one surrounding the prediction. 
These ranges are used to classify the measured value into 
one of the following categories: reliable, reasonable 
reliable and unreliable. The width of the intervals varies 
over time: the more time has passed since the last 
recalibration, the wider the intervals are. Fig. 3 illustrates 
the intervals around the prediction value. 

After the measurement is performed the got BG value 
is being compared to the prediction value using the 
around intervals. As the measured value is within one of 
the ranges, it can be applied to some category. The 
categories, reliability intervals, and their verbal 
description are given in Table I. 

Owing to classification intervals, it is possible to detect 
such situations as incorrect patient data input, glucose 
errors and insulin pump faults. Besides them, several 
errors can be detected by the closed-loop components by 
themselves: glucometer alarms or infusion failures. The 
detected problems are reported about to the main control 
unit of the closed-loop system, which generates alarms 
and notifies. 

 

 
Figure 3.  The schematic interval illustration around the prediction 

value. 

After the algorithm detects the meal intake, it starts the 
calculation of bolus insulin dose for compensating the 
taken carbohydrates and keeping the patient BG within 
safe values. This calculation is performed using the 
mathematical model of blood glucose dynamics.  

TABLE I.  CLASSIFICATION OF BG MEASUREMENTS 

Interval Classification Algorithm react 

1, 2 Small difference, reliable 
value 

Moving the prediction to 
the measured value 

3 Large positive difference 
BG refinement mode, 

possible incorrect meal 
data 

4 Large negative difference 
BG refinement mode, 

possible incorrect insulin 
data 

5, 6 Unreliable measurement Glucometer fault 

 

D. Short-Term Prediction Alrorithm Validation 
Approbation of developed prediction algorithm based 

on empirical sigma-model was performed by the 
computer simulation using DirecNet database. The 
method allows one to work with large amount of data and 
to repeat experiments with different controlled settings.  

During validation of developed prediction algorithm it 
was necessary to take into account errors that occur in the 
BG track. It was simulated by addition to the processed 
track points normal noise with levels of 0, 10, 15, 20 and 
25 %. The experiment goal is to evaluate prospects of the 
algorithms applicability in the real closed-loop system. 

To quantify clinical accuracy of patient estimates of 
their current blood glucose as compared to the blood 
glucose value obtained in their meter the Clarke error grid 
analysis (EGA) [15] is used. On X-axis, there are real BG 
and on Y-axis – measured ones. In the case of prediction 
algorithm approbation on Y-axis, there are prognoses. 
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During approbation eight patient data from one of 
DirecNet studies was used. Patients 7, 10, 37, 41, 55, 59, 
61, 69 had the most complete set of data about meal and 
insulin injections and had a track without noisy or empty 
zones. 

For each patient were made 10 noisy tracks for each 
level of noise: 0, 10, 15, 20 and 25% and 1 clean track. In 
every experiment, the algorithm operation was estimated 
with EGA and averaged relative deviation (ARD) the 
prognosis from real BG values. Estimation results were 
added in the common protocol for further additional 
analyzing. 

The algorithm validation was performed according to 
the following criteria: 

• algorithm response on  BG measurements error; 
• BG prognosis quality in different patients with 

similar set of parameters; 
• prognosis quantity parameters repetition with 

fixed experiment parameters, but different time 
distribution of measurement errors.   

III. RESULTS 

For algorithm response on errors analysis for each 
patient were made single tables with ARD and EGA 
results for every noise level. Tables include averaged 
results for all ten experiments for the patients. 

As an example, analysis results for patient 59 are 
presented in Table II. Fig. 4 shows an example of EGA 
analysis for the same patient. Common approbation 
results including all patients’ data on all errors are shown 
on Fig. 5. 

TABLE II.  EGA AND ARD ANALYSIS RESULTS FOR PATIENT 59 

Noise 
level, % ARD, % 

Averaged Clarke error grid values, % 

A B C D E 

0 2.0 100.0 0 0 0 0 

10 3.0 99.98 0.02 0 0 0 

15 6.6 92.96 6.17 0 0.87 0 

20 7.4 91.92 4.41 0 3.67 0 

25 13.7 81.83 14.86 0 3.31 0 

 
Results demonstrate that the algorithm operation 

depends on BG measurement accuracy. With the measure 
error increase raises algorithm’s ARD. However, as Fig. 
4 and Table II shows with noise increase from 10 to 25% 
the amount of values from Zone A of the Clarke error 
grid falls only from 99% to 80%. Taking into account 
unadjusted mathematical model parameters for every 
single patient and results averaging this fall may be 
considered as unessential.  

To estimate BG prognosis quality in different patients 
with similar set of mathematical model parameters, data 
from the common protocol was divided into separate 
tables for every noise level. Tables included patient 
number, ARD and EGA results. Prognosis results for all 
patients on noise level 10% are presented in Table III.   

 
Figure 4.  Prediction EGA for patient 59. 

 
Figure 5.  Approbation results with different noise levels. 

TABLE III.  ANALYSIS RESULTS ON 10% NOISE LEVEL FOR ALL 
PATIENTS 

Patient ARD, % 
Averaged Clarke error grid values 

A B C D E 

7 4,6 94,5 5,5 0 0 0 

10 3,3 97,1 2,9 0 0 0 

37 7,6 89,0 10,3 0,4 0,1 0,2 

41 7,3 89,3 10,7 0 0 0 

55 9,4 82,9 16,9 0 0,2 0 

59 3,0 99,8 0,02 0 0 0 

61 20,8 65,9 33,1 0,2 0,6 0,2 

69 8,1 89,4 10,5 0,1 0 0 

 
As it could be noticed from the Table III, the algorithm 

shows different results for different patients with similar 
set of parameters. Especially, patient 61 had the most 
significant influence on the results. Therefore, parameters 
should be accurately adjusted (chosen) for every patient 
during calibration to achieve the best algorithm 
performance. However, for all patients with BG 
measurement error of 10% ARD is less than 20%, while 
without patient 61 it is even less than 10%. From there, it 
could be considered that the closed-loop on the basis of 
the developed algorithm will allow verifiable prognosis 
even in the case of parameters change in time. Besides, it 
will show better results being properly calibrated. 

Then, there was analyzed the influence of different 
time distribution of measurement errors on prognosis 
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quantity parameters repetition with fixed experiment 
parameters. For that end, the common protocol was 
divided into separate tables for every patient and noise 
level. Tables included ARD and EGA results for all ten 
iterations of the experiment. Such a table for the patient 
10 and for 15% noise level is demonstrated by Table IV.   

It may be noted that developed short-term algorithm is 
unsusceptible to the different time distribution of 
measurement errors. 

TABLE IV.  ANALYSIS RESULTS FOR PATIENT 10 ON 15% NOISE LEVEL 
FOR ALL TEN ITERATIONS 

Iteration ARD, % 
Averaged Clarke error grid values 

A B C D E 

1 4 97,5 2,5 0 0 0 

2 3 98,6 1,4 0 0 0 

3 3 99,5 0,5 0 0 0 

4 4 96,3 3,7 0 0 0 

5 5 95,3 4,7 0 0 0 

6 4 96,0 4,0 0 0 0 

7 4 96,8 3,2 0 0 0 

8 4 99,3 0,7 0 0 0 

9 3 99,6 0,4 0 0 0 

10 4 96,5 3,5 0 0 0 

 
Further experiments should be performed with the data 

of all possible patients from all DirecNet studies in order 
to get more verifiable statistical results. 

IV. CONCLUSIONS 

We have marked out three groups of blood glucose 
mathematical models and considered methods of their 
approbation. Empirical models of blood glucose dynamic 
allow effective operation of bioengineering system of 
patient and the closed-loop system based on noninvasive 
glucometer and insulin pump. In combination with 
physiological independence, it provides sufficient high 
accuracy of prognoses and is not resource-intensive. 

The short-term prediction algorithm based on the 
empirical sigma-model was described. Approbation of the 
algorithm was performed using DirecNet database. The 
available DirecNet data allows providing effective 
prediction algorithm and empirical mathematical model 
evaluation.  

Primary tests show that sigma-model based algorithm 
is unsusceptible to patient physiological quasi-constant 
parameters variability and is susceptible to noise level. 
Relative deviation of prognosis with 25% error of BG 
meter is less than 20%.  
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