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Abstract—Quite recently, considerable attention has been 

paid to finding the distinction between driver mutations that 

lead to tumorigenesis and passenger mutations that are 

neutral and do not play any role in the cancer proliferation. 

The main objective of this work is to come up with a new 

method to solve “The Maximum Weight Submatrix 

Problem”. To that end, we introduce a new constraint 

named “approximate exclusivity” that helps to determine 

precisely the number of mutations that each patient has in 

the pathway. Depending on this constraint, we present a 

novel algorithm that detects driver mutated pathways based 

on an exact approach. We describe the details about our 

algorithm, then we compare the results with a Genetic 

Algorithm and a Binary Linear Programming model in both 

simulated and genetic data. Our exact algorithm has shown 

a good performance in terms of maximizing the weight and 

detecting all the possible driver pathways.

 

 

Index Terms—driver pathways, maximum weight submatrix 

problem, exact algorithm, genetic algorithm, binary linear 

programming, glioblastoma multiform 

 

I. INTRODUCTION 

Cancer stands for a group of more than 100 diseases 

caused by genetic changes, such as somatic mutations in 

DNA. In such wise, when cells make a copy of 

themselves during the cell division, some mutations occur. 

Analyzing these mutations in order to tell apart neutral 

mutations from the mutations that lead to cancer 

propagation has become a challenging task. 

Previous studies indicate that driver mutation lead to 

tumorigenesis, while passenger mutations are neutral and 

do not play any role in the cancer proliferation. To that 

end, it is very effective to test the biological function of 

the mutation in order to decide whether it is a driver or a 

passenger mutation. The literature on testing the 

biological function shows a variety of techniques and 

methods that have been developed. We can list 

frequency-based methods [1], [2], methods that require a 

prior knowledge about pathways [3], [4] and methods that 

find mutated genes and pathways without any prior 
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knowledge of pathways or other interaction between 

genes [5], [6].  

Quite recently, there has been a growing interest in 

algorithms that do not require any prior knowledge, since 

we cannot get all the information about pathways and 

interactions between genes. The most interesting 

approach to this issue has been proposed by Vandin et al. 

[5] and was named “The Maximum weight Submatrix 

Problem”. It is about maximizing a scoring function that 

combines two properties: high coverage and mutual 

exclusivity [6].  

To solve the “Maximum weight Submatrix Problem”, 

many researchers have proposed various methods in this 

area. We count, Dendrix [7], some random search based 

algorithms [8]-[11] and a method based on gene networks 

construction [12]. 

In this paper, we introduce a new constraint that helps 

to determine precisely the number of mutations that each 

patient has in the pathway. We also introduce an 

algorithm that we have designed based on an exact 

approach in order to detect all the possible driver 

pathways. In order to emphasize the performance of our 

algorithm, we compared the results with both the BLP 

and the GA both cited in [6]. 

II. PROBLEMDESCRIPTION 

Vandin et al. [5] indicated that “The Maximum Weight 

Submatrix Problem” is a very effective approach for 

detecting driver pathways without any prior knowledge. It 

plays a vital role in detecting new pathways that have not 

been detected by other methods and that can be a real 

case of study for future works [13]. 

The “Maximum Weight Submatrix Problem” takes into 

consideration two constraints. “High coverage” which is 

about identifying the number of patients with at least one 

mutation in the group of genes, and “high exclusivity” 

that implies finding a group of genes where each patient 

has at most one mutation in the pathway. 

By constructing a binary mutation matrix A(m,n), 

based on somatic mutation data with m rows (patients) 

and n columns (genes), the Maximum Weight Submatrix 

Problem is about finding a submatrix M(m,k) with m 
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rows and k columns from the mutation matrix A(m,n) by 

maximizing the fitness function: 

 ( )   | ( )|  ∑ | ( )|

   

 

where| ( )|  *       +  denotes the set of patients 

with a mutation in gene g. 

| ( )| Indicates all thesets of patients that have 

mutations in the set M of genes. 

III. OUR PROPOSED METHOD 

A. Description 

Even though the efficiency of detecting new driver 

pathways using the scoring functions has improved in 

recent years, most improvements have been achieved by 

maximizing the “Maximum Weight Submatrix Problem”. 

Nevertheless, it is possible to further improve the 

efficiency by coming up with a new method based on an 

exact approach. With this goal, this work seeks to define 

a new constraint that we have named “approximate 

exclusivity “ and by developing an exact approach that 

can produce all the possible driver pathways with the 

maximum weight. 

Fig. 1 depicts a mutation matrix that we have simulated 

at random with 10 patients (rows) and 11 genes (columns). 

When k stands as 2, the group of genes {i,j} illustrated by 

the submatrix B respects the constraint of high coverage 

and it is mutually exclusive. The weight of the submatrix 

B is W(B) = 8. 

 

Figure 1. Illustration of the binary mutation matrix A with 10 patients 

and 11 genes. 

When k is 3, the set of genes {c, d, e} which is 

represented by the submatrix C is also high coverage and 

mutually exclusive with a weight W(C) = 7. It is clearly 

noticeable that for both k = 2 and k = 3, the submatrices B 

and C has the greater weights W(B) and W(C).  

However, for k = 2, the submatrix A is approximately 

exclusive with a weight W(A) = 9. Also when k 

represents 3, the submatrix D shows an approximate 

exclusivity gene set with a weight of W(D) = 9. 

We conclude that, regardless the value of k, the gene 

sets with approximate exclusivity have always a weight 

greater than those with mutual exclusivity. In this 

direction, we can notice that it is needful to define a new 

constraint that we call “approximate exclusivity degree” 

or “co-occurrence degree”   which assists in finding 

exactly mutation number that each patient has in the 

pathway. Note that if    , the gene set is mutually 

exclusive. 

B. ExactAlgorithm 

The main objective of this work is to find groups of 

pathways with maximum weight and appropriate co-

occurrence degree. For this purpose, we implemented an 

algorithm that filters all submatrices given the value of k 

and the co-occurrence degree α.This co-occurrence 

degree is subject to the following constraint:      . 

If    the submatrix M is mutually exclusive, if    

the submatrix is approximatively exclusive. Table I 

illustrates the steps of our exact algorithm. 

TABLE I. ILLUSTRATION OF THE EIGHT STEPS OF THE EXACT 

ALGORITHM. 

Exact Algorithm Detecting submatrices with the maximum 

weight 

Input: 

The mutation matrix A(m,n). 

The size of the gene set k. 

The co-occurrence degree . 

Output: 

All the submatrices with maximum weight and respect the co-

occurrence degree  . 

1. Remove the genes with a frequency of mutation less than 

5%; 

2. Make all the combination of genes to get the 

submatrixM(m,k). 

3. Calculate the number of ones per row N1 for every 

submatrixM(m,k). 

4. Delete the submatrices with N1 less than   in M(m,k). 

5. Count how many rows are not all zeros  ( ) ; 
6. Count the number of ones in all the submatrix∑ | ( )|   ; 

7. Calculate the weight W of every submatrix M2 using the 

formula  | ( )|  ∑ | ( )|   ; 

8. Return all the submatrices with the highest weight W; 

In the first step, we removed the genes with the 

frequency of mutation is less than 5% because genes 

altered in only one or few cancer patients may not be 

driver mutations and possibly could be passenger ones 

[12]. In the second step, we made all the possible 

combinations of genes according to the k value. After that, 

we proceeded by deleting the matrices that do not fit with 

the co-occurrence degree. Then for the next steps, it is 

about calculating the weight and producing set of genes 

with the highest weight. 

IV. EXPERIMENTAL RESULTS AND COMPARISON 

We ran our experiments on a 2.4GHz i7-5500U CPU 

PC, and we applied it on both simulated data and 

biological data, then we compared the results with the 

BLP model and the GA, both [6]. 

A. Simulated Data 

We generated mutation data for m=100 patients and  

n=(100,200,300,400,500) genes. Our experiments have 

shown that the major drawback of the GA is that it shows 

an instability in maximizing the weight, this clearly 

noticeable from Fig. 1. However, our Exact Algorithm 

and the GA always produce the same weight. 
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Figure 2. Comparison of the weights obtained by the three methods.  

In this scenario, the x-axis represents the number of 

genes and the y-axis is the weight. The red line denotes 

the weight of GA, the black line with circles represents 

our Exact Algorithm, and the blue line with „+‟ denotes 

BLP. 

B. Biological Data 

In this study, in order to assess the performance of our 

algorithm. We applied the BLP model, the GA and our 

Exact Algorithm tothe Glioblastoma multiform data 1, 2 

and 3obtained from Zhao et al. [6]. Glioblastoma data 1 

and 3 are two mutation matrices of 84 patients and 178 

genes while Glioblastoma data 2 is a mutation matrix of 

90 patients and 1126 genes. 

1) Glioblastoma Multiform Data 1  

When k is 2, the three algorithms produce (CDKN2B, 

CYP27B1) as optimal gene set. The weight of this gene 

set is 54 and it is mutated in 57 samples. CDKN2B is 

known to be the core member of the cell cycle and the 

p53 signaling pathway [14]. Furthermore, Wu H et al. [12] 

have shown that CYP27B1 is also a member of the 

Glioblastoma copy number up.  

When k stands as 3, (CDKN2B, CYP27B1, RB1) was 

the unique gene set produced by the algorithms. This 

gene set is important, since it is altered in 79% of the 

patients. 

For k=4, only 5 gene sets were produced by the GA 

while our exact algorithm has detected 6. As emphasized 

in Figure 3 (CDK4, CDKN2B, ERBB2, RB1) is the 

significant gene set missed by the BLP and the GA. This 

set of genes covers 83% of the diagnosed patients. In 

addition, CDK4, CDKN2B and RB1 are the core 

members of the cell cycle part of the p53 signaling 

pathway [15]-[17], while ERBB2 is the member of the 

Glioblastoma copy number up [12]. 

The major drawback of the GA and the BLP model is 

that, when the size of the gene set increases, their ability 

of sampling new maximum weighted gene sets decreases 

significantly. This is clearly noticeable when k is 5. Our 

Exact Algorithm has detected 31 optimal gene set while 

the BLP has detected one and the GA has detected only 

10 optimal solutions. The gene sets were sampled with a 

co-occurrence degree of 3 and a weight of 60. 

Furthermore, ERBB2 is a part of the p53 signaling 

pathway and the genes CDKN2B and RB1 are core 

members of the cell cycle and ERBB2. These three genes 

were universally detected in every optimal gene set 

sampled by our Exact Algorithm. 

 

Figure 3. Submatrix of the optimal gene produced by our exact 

algorithm.  

We show the mutation characteristics between patients 

and genes: (black) exclusive mutation; (red) co-occurring 

mutation; (white) no mutation. 

2) Glioblastoma Multiform Data 2 

When k represents 2, the three methods have produced 

three identical gene sets with a weight of 58. We have 

noticed that the genes CDK4, CDKN2B, CDKN2A, 

CDKN2B and TP53 are dominant in most of the gene sets 

sampled. These genes are the core members of the cell 

cycle. However, Zhang et al. [6] have proven that until 

now, no relationship has been proven between TSPAN31 

and CDKN2B. 

When k is 3, 2 optimal gene sets have been sampled. 

These sets of genes cover 73 % of the diagnosed patients. 

The pair of genes (CDK4, CDKN2B) that we detected 

whenk was 2 contains RB1. These sets were detected as a 

potential pathways and were a subset of the set (CDK4, 

CDKN2B, ERBB2, RB1) in Glioblastoma Data 1. CDK4, 

CDKN2B and RB1 are all the core members of the cell 

cycle [13].   

Table II reveal that when  k is set as 4 and    , our 

Exact Algorithm samples 5 maximum weighted gene sets 

with 59 as the maximum weight. All the genes that form 

the quadruplet (CDK4, CDKN2A, RB1, TP53) are the 

core members of the Glioma which is a tumor that starts 

in the brain and spinal cord. In addition, three gene sets 

have the triplet (CDK4, CDKN2B, RB1) as a core subset 

with the genes CPT1B, NF1 and PIK3R1 each one 

separately. As for CPT1B, it is a part of the AMPK 

signaling pathway. PIK3R1 is also a core member of the 

glioma while NF1 is a part of the MAPK signaling 

pathway. The last quadruplet (CDKN2A, MDM2, 
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PIK3R1, TP53) encloses the gene MDM2 which is also a 

core member of the glioma and the cell cycle. On top of 

that, it is also it is a part of different signaling pathways 

such as the p53 signaling pathway [13]. 

TABLE II. GLIOBLASTOMA DATA 2 RESULTS WHEN K IS 2, 3 
AND 4 

Optimal gene sets Set size Weight Coverage 

CDK4, CDKN2B 2 58 67% 

CDKN2A, TP53 2  58 71% 

CDKN2B, TSPAN31 2 58 67% 

CDK4, CDKN2B, RB1 3 63 73% 

CDKN2B, RB1, TSPAN31 3 63 73% 

CDK4, CDKN2B, 

MAN1A1, RB1 4 60 74% 

CDK4, CDKN2B, MET, 

RB1 4 60 74% 

CDK4, CDKN2B, NMBR, 

RB1 4 60 74% 

CDKN2B, MAN1A1, 

RB1, TSPAN31 4 60 74% 

CDKN2B, MET, RB1, 

TSPAN31 4 60 74% 

CDKN2B, NMBR, RB1, 

TSPAN31 4 60 74% 

It is important to say that, Fork=5 the gene set 

(CDKN2A, MDM2, MDM4, PIK3R1, TP53) was 

sampled by our Exact Algorithm. This gene covers 80% 

of the patients, and it is composed by the quadruplet 

(CDKN2A, MDM2, PIK3R1, TP53), that was previously 

sampled when k was 4. MDM4 as well as MDM2, are 

both parts of the p53 signaling pathway. 

3)
 

Glioblastoma Multiform Data 3 

For k = 2, the three algorithms have produced (EGFR, 

NF1) as optimal gene set with aweight of 50. This set of 

genes covers 61% of the diagnosed patients. The 

detection of EGFR is important because this gene serves 

as a stimulus for cancer growth and it plays an important 

role in the regulation of cellular homeostasis. It is also a 

core member of different signaling pathways such as 

ErbB signaling pathway, FoxO signaling pathway, and 

MAPK signaling Pathway while NF1 is a core member of 

the Ras signaling pathway and the MAPK signaling 

pathway [13]. 

As Table III reveals that4 triplets of genes have been 

produced with a weight of 54 and a co-occurrence degree 

   . Two triplets cover 80% of the diagnosed patients 

while the remaining sets cover 70%. These 4 gene sets are 

formed with the genes MTAP, NF1, TSFM, TSPAN31 

and PTEN. 

TABLE III.
 

GLIOBLASTOMA DATA 3WHEN K IS 2,
 

3
 

AND 4 

Optimal gene sets 
 

Set size
 

Weight
 

Coverage
 

EGFR, NF1
 

2
 

50
 

61%
 

MTAP, NF1, TSFM
 

3
 

54
 

70%
 

MTAP, NF1, TSPAN31
 

3
 

54
 

70%
 

MTAP, PTEN, TSFM
 

3
 

54
 

80%
 

MTAP, PTEN, 

TSPAN31
 3

 
54

 
80%

 

DOCK1, GLI1, MTAP, 

PTEN
 4

 
55

 
77%

 

When k is 4, the three algorithms have detected only 

one optimal gene set (DOCK1, GLI1, MTAP, PTEN). 

This quadruplet covers 77 % of the samples. DOCK1 is a 

significant gene and plays an important role in cell 

proliferation and gene expression. GLI1, it is a core 

member of the Hedgehog signaling pathway, it helps to 

control cell proliferation and stem cell maintenance and 

development. MTAP is known to play an important role 

in Cysteine and methionine metabolism. Several studies 

has shown that the mutation of PTEN has a relationship 

with several types of cancers including Breast cancer, 

Endometrial cancer, Lung cancer and Prostate cancer. 

Concerning Glioblastoma multiform, PTEN also plays an 

important role in the glioma cell proliferation. 

When k stands as 5, our Exact Algorithm detected 

solution (DOCK1, GLI1, KDR, MTAP, PTEN) as 

optimal solution with a co-occurrence degree    . This 

gene set was sampled with a weight of 54 and covers 67 

patients. This gene set is formed by KDR and the set of 

genes (DOCK1, GLI1, MTAP, PTEN). This 

quadrupletwas previously detected when k = 4. KDR is a 

part of the Ras signaling pathway, the PI3K-Akt signaling 

pathway, the Rap1 signaling pathway, and even others. In 

addition, the same as EGFR and PTEN, KDR contributes 

in cellular homeostasis [13]. 

V. CONCLUSION 

The main concern of the paper was to propose a new 

approach in identifying driver genes and driver pathways 

that can be readily used in practice to contribute in 

determining the potential causes of the glioblastoma 

multiform cancer particularly and the human cancer 

generally, and then, naturally assist in designing cancer 

treatments. 

By conducting some experiments, we have proven that 

whatever the k value is, the weight of the mutually 

exclusive gene sets is always less than those with 

approximate exclusivity. Based on that, we have shown 

that if we want to identify multiple driver pathways and 

find gene sets whose weights are maximized, it is 

necessary to define a new constraint; we called it 

“approximate exclusivity”. It assists in finding groups of 

genes respecting the co-occurrence degree (approximate 

exclusivity degree)   that determines the number of 

mutations, which each patient has in the pathway. Then 

depending on this constraint, we designed an algorithm 

based on an exact approach in order to solve the 

maximum weight submatrix problem. 

To assess the effectiveness of our method, we 

compared the results of our algorithm with the GA and 

the BLP model [6]. In both simulated data and 

glioblastoma multiform data, our method has shown a 

great ability in sampling all the possible driver pathways 

and finding group of genes whose weights are maximized. 

A key limitation of the BLP and the GA is that, when the 

size of the gene set raises, they cannot guarantee the 

optimal results in terms of maximizing the weight and 

sampling all the possible driver pathways. This was 

clearly noticeable in Glioblastoma Data 1. When the size 

of the gene set was 5, our exact algorithm produced 31 
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optimal results while the BLP and GA have sampled only 

10. To that effect, more tests and experiments will be 

needed in order to elucidate if there is any relationship 

between some of the genes sampled and the human 

cancer.  
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