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Abstract—Type II membrane proteins in the Golgi 

apparatus play important roles in biological functions, and 

predominantly exist as catalysts related to post-translational 

sugar modification. This study describes a new method for 

detecting Golgi-localized type II membrane proteins (GLs) 

from post-Golgi type II membrane proteins (PGs), which 

are mainly localized in the plasma membrane and 

endoplasmic reticulum (ER). The method is based on 

hydropathy profiles and the position-specific scoring matrix 

(PSSM) in combination with the back propagation artificial 

neural network (BP-ANN). The accuracy of discriminating 

GLs from PGs was evaluated in a 5-fold cross-validation test 

with 94.7% sensitivity and 93.5% specificity. This result 

shows that our method can predict GLs with high accuracy, 

and that the PSSM and BP-ANN combination can 

effectively discriminate GLs. 

 

Index Terms—Golgi, endoplasmic reticulum (ER), plasma 

membrane, type II membrane protein, discrimination, 

hydropathy analysis, position-specific scoring matrix (PSSM) 

 

I. INTRODUCTION 

The Golgi apparatus has many important proteins that 

are mainly related to the modification of protein 

oligosaccharides and vesicular transport. Notably, Golgi-

localized type II membrane proteins (GLs), including 

epimerases, nucleotidases, decarboxylases, 

oligosaccharide synthases, polysaccharide-degrading 

enzymes, and glycosyltransferases, are often found in the 

Golgi apparatus. The major members of the GLs are 

glycosyltransferases, which are related to protein sugar 

modification [1]–[3]. Sugars play important roles in many 

vital reactions such as cell adhesion, signal transfer, and 

subcellular localization, and their type and order 

variations depend on the localization of 

glycosyltransferases. Therefore, the identification and 

classification of GLs is essential in clarifying the 

mechanisms underlying sugar modification. Thus, a 

computational method for finding GLs in mammalian 

genomes is desired. 

                                                           
Manuscript received November 20, 2017; revised January 20, 2018. 

The computational protein localization prediction 

systems like NNPSL [4], PSORT II [5], TargetP [6], 

SubLoc [7], iPSORT [8], LOC3D [9], PLOC [10], and 

other algorithms [11]–[17] are considered to be powerful 

tools as predictors of the subcellular localization of 

unknown proteins. However, these tools do not easily 

predict Golgi-localized membrane proteins because of the 

absence of clear signals or motifs for Golgi transport, and 

the low number of available membrane proteins in 

training datasets to develop the localization predictors. 

Therefore, an original GL detection system is required. 

In our previous study, a detection algorithm of GLs 

was developed by a position-specific score matrix (PSSM) 

[18]. PSSM was calculated by the hydropathy alignment 

position-specific amino acid propensities of GLs and 

post-Golgi type II membrane proteins (PGs). Using this 

method, GLs were detected with 96.2% sensitivity and 

93.5% specificity in a self-consistency test, and with 

88.0% sensitivity and 85.5% specificity in a 5-fold cross-

validation test. However, the method needed to be 

improved by combining machine learning approach. 

In this study, GL and PG discrimination was achieved 

using a combination of PSSM and the back-propagation 

artificial neural network (BP-ANN). By applying BP-

ANN, GL discrimination accuracy improved because the 

most appropriate alignment-position-specific connection 

strength could be adjusted. BP-ANN, with a three-layered 

structure, was trained by the PSSM of GLs and PGs. GLs 

could be detected with 94.7% sensitivity and 93.5% 

specificity in a 5-fold cross-validation test. 

II. MATERIALS and METHODS 

A. Dataset Preparation 

Datasets of mammalian GLs and PGs were obtained 

from the UniProt Knowledgebase/Swiss-Prot protein 

sequence database release 2017_04 (April 2017) [19] by 

conducting a search with the keywords “Mammalia” in 

OC lines and “type II membrane protein” in CC lines. 

Entries that had a “Fragment” annotation in the DE lines 

were excluded from the dataset. The GLs were also 
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distinguished from the negative control (PGs) based on 

the “Golgi” annotation for subcellular localization. Data 

with the annotation “Potential” or “Probable” were 

eliminated. Representative sequences were extracted 

from the groups that clustered based on 100% sequence 

identity using the CD-HIT program [20]. 

B. Hydropathy Alignment and Dataset Extraction for 

Position-Specific Scoring Matrix 

The average hydrophobicity of each protein was 

estimated using the moving average method with a 

sliding window of a certain size. The Kyte-Doolittle (K-D) 

hydropathy index [21] was used to calculate amino acid 

hydrophobicity. Accordingly, the average hydrophobicity 

(Hi) of the 100 amino acid residues at the N-terminus was 

expressed as follows: 
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Where, H(k) is the K-D hydropathy index at the sequence 

position k and w is the sliding window size for average 

calculation. As shown in Fig. 1, the most hydrophobic 

position for each sequence was determined by the moving 

average method, and the hydrophobicity profiles of these 

sequences were aligned by superpositioning the most 

hydrophobic positions (standard points). The sequences 

in the -20 to +20 amino acid region were extracted based 

on the standard point. 

(1) Search the position with the highest 
average hydropathy.

Alignment

position
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Figure 1. Hydropathy alignment and sequence extraction. 

The following equation was used to calculate the 

position-specific amino acid propensity (fjp) of each 

protein:
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Where,
 
p
 
represents the alignment position determined 

from the position with the highest average hydrophobicity. 

To avoid setting the denominator at zero in the case of the 

PSSM calculation, a constant mode of the pseudo-count 

was introduced [22] as follows:
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Where,  is the pseudo-count (= 1). The position-specific 

score sjp was computed based on the following equation: 
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Where, the superscript GL and PG represents the amino 

acid propensity in the GL and PG dataset, respectively. 

C. Score Estimation Using Back-Propagation Artificial 

Neural Network 

BP-ANN, with a three-layered structure (Fig. 2), was 

used to discriminate the GLs from PGs. Position-specific 

scores, calculated using equation (4), were assigned to a 

41-residue amino acid sequence of the extracted GL and 

PG entries. After 41 of the position-specific scores of 

each entry were input into the first layer, BP-ANN was 

trained 150 times. 
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Figure 2. Flow chart for the GL discrimination method using BP-ANN. 

D. Evaluation of the GL Discrimination Accuracy 

The n-fold cross-validation test is often used for the 

discriminant analysis of protein sequences [23]–[26] to 

estimate the prediction accuracy based on sensitivity (Sn), 

specificity (Sp), and success rate (Sr) as shown below: 

Sn = TP / (TP + FN)                         (5) 

Sp = TN / (TN + FP)                        (6)
 

Sr = (Sn×Sp)1/2                             (7) 

In the above equations, TP, TN, FP, and FN indicate 
true positive, true negative, false positive, and false 
negative, respectively. In the 5-fold cross-validation 
test, four folds of the non-redundant datasets were 
randomly selected to create the PSSM and the 
remaining fold was used to test the discrimination. 
The average sensitivity, specificity, and success rate 
was calculated for 1000 random selections. 

III. RESULTS AND DISCUSSION 

The number of entries in the non-redundant GL and 

PG datasets from the UniProt Knowledgebase/Swiss-Prot 

protein sequence database release 2017_04 for evaluating 

the discrimination accuracy in the 5-fold cross-validation 

tests were 258 and 213 sequences, respectively. The 

position-specific amino acid propensities of the GLs and 

PGs based on the hydropathy alignments were calculated 

using equation 3, which has a pseudo-count. PSSM was 

created to identify the characteristics of individual amino 

acids and to discriminate GLs from PGs using those 

characteristics. 

Table I shows the accuracy of GL and PG 

discrimination using the original non-redundant datasets 

(258 GLs and 213 PGs) with/without BP-ANN as 

evaluated in the 5-fold cross-validation test. In the test 

without BP-ANN, the discrimination score (S) was 

estimated by taking the sum of the position-specific 

scores at each alignment position and normalizing them 

to the number of amino acids added from positions M to 

N (Ws), as shown in the equation below: 
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The lower boundary position (M), used to calculate the 

discrimination score, varied in the range of -20 to -5, and 

the upper boundary position (N) varied from +5 to +20. 

Maximum accuracy was obtained by adding the scores of 

the 35 residues located within the -18 to +16 range. 

TABLE I.  THE ACCURACY OF GL AND PG DISCRIMINATION 

WITH/WITHOUT BP-ANN USING THE 5-FOLD CROSS-VALIDATION TEST 

BP-ANN Ws Sn [%] Sp [%] Sr 

+ 41 94.7 93.5 0.94 

－ 35 89.5 84.0 0.86 

－ 

(previous study) 
23 88.0 85.3 0.87 

BP-ANN is a network of non-linear processing units 

that have adjustable connection strengths between each 

layer. The BP-ANN in our method has only one hidden 

layer and therefore, the connection strengths directly 

provide information regarding the amino acids and the 

positions that are important for the GL characterization. 

Discrimination accuracy improved because the most 

appropriate alignment-position-specific connection 

strengths could be adjusted by training BP-ANN with 

PSSM. 

GLs were discriminated from PGs with high accuracy 

using an algorithm that involved hydropathy alignment, 

PSSM, and BP-ANN in this study. Hydropathy alignment 

can select the sequence around transmembrane regions of 

GLs and PGs as the first step [19]. The PSSM and BP-

ANN combination can then find the region that has the 

characteristics of GLs with high accuracy. Our method 

can effectively identify GLs from unknown membrane 

protein sequences due to the high evaluation obtained 

from combining membrane protein prediction tools such 

as TMHMM [27], SOSUI [28], and other algorithms [29, 

30]. This method is a promising tool that can contribute 

to the genome-wide screening of GLs. The 

comprehensive identification of GLs is expected to reveal 

the mechanisms of protein glycosylation. 

IV. CONCLUSION 

The combination of PSSM, based on position-specific 

amino acid propensities in sequences aligned with respect 

to residue size, and the BP-ANN technique allowed us to 

distinguish GLs from PGs with high accuracy. The 

position-specific amino acid propensities and the 

connection strengths in BP-ANN around the 

transmembrane regions are important parameters for the 
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identification of GLs.  
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