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Abstract—Recognition of hand activities could provide new 

information towards daily human activity logging and 

gesture interface applications. However, there is a technical 

challenge due to delicate hand motions and complex 

movement contexts. In this work, we proposed hand activity 

recognition (HAR) based on a single inertial measurement 

unit (IMU) sensor at one wrist via deep learning recurrent 

neural network. The proposed HAR works directly with 

signals from a tri-axial accelerometer, gyroscope, and 

magnetometer sensors within one IMU. We evaluated the 

performance of our HAR with a public human hand activity 

database for six hand activities including Open Door, Close 

Door, Open Fridge, Close Fridge, Clean Table and Drink 

from Cup. Our results show an overall recognition accuracy 

of 80.09% with discrete standard epochs and 74.92% with 

noise-added epochs. With continuous time series epochs, the 

accuracy of 71.75% was obtained.  

 

Index Terms—hand activity recognition, IMU, wrist sensor, 

deep learning, RNN 

 

I. INTRODUCTION 

Recognition of human hand activities could generate 

new information towards hand gesture user interface and 

daily hand activity loggings applications since this could 

provide contextual information of activity logs or gestures. 

To measure hand motions, recently inertial measurements 

units (IMUs) are readily available on smartphones, smart 

bands, and smart watches. Each IMU includes a set of 

tri-axial accelerometer, gyroscope, and magnetometer. 

With novel classification algorithms, one can recognize 

hand activities by classifying IMU signal features.  

Substantial challenges still remain for hand activity 

recognition using wearable sensors. First, data recorded 

using wearable sensors contains very complex contexts of 

signal variations due to the freedom of hand movements. 

Second, this kind of HAR works requires a database of 

sensor recordings with the ground truth annotation of true 

hand activities, but it is not easy to collect such data. Third, 

extracting and selecting features to be used in classification 

are necessary for most applications. In general, most 

classifiers cannot handle raw sensor directly as inputs. 

                                                           
Manuscript received June 9, 2017; revised September 2, 2017. 

Traditional hand activity recognition works used different 

classification methods, such as decision tree, k-nearest 

neighbor, Naïve Bayes, and Support Vector Machines [1]. 

Even for time sequential data, Conditional Random Forest 

or Hidden Markov Model were used [2], [3]. Most of these 

conventional approaches require careful selection of 

extracted features.  

Recently deep learning techniques offer a new 

opportunity to handle more complex data and inference. 

These deep learning methods have proven the potential to 

advance the state-of-the-art in HAR. Especially, these 

approaches overcome the needs of standard features 

extraction procedures, since they offer an advantage 

through their ability to learn and extract hidden 

representation from raw data and classify at the same time. 

Lately, some sophisticated models using these techniques 

have successfully been used for a challenging HAR tasks 

[4]. A dominant deep learning approach for HAR has been 

convolutional neural networks (CNNs). This technique 

utilizes convolutional kernels to extract key features from 

the temporal axis [5]-[7]. All the information obtained from 

the convolutional operations was unified to estimate the 

probability for human activities. Recently sequential 

modeling approach has been employed with favorable 

results via recurrent neural networks (RNNs) [4], [8], [9]. 

Specifically, these models are based on Long Shot Term 

Memory (LSTM) [10]. Combining CNN and RNN 

previous works were able to increment the performance of 

their results. RNN algorithm allows taking into account not 

only the current input data also previous ones. The memory 

unit improved by LSTM allowed a better abstraction of 

sequential input data like HAR using raw signals recorded 

from sensors. Most of these studies employed multiple 

IMU sensors to improve the recognition accuracy. There 

are only a few studies operating with a single IMU. A 

technical challenge remains to achieve feasible recognition 

with a single IMU and novel classifiers for practical 

applications.  

In this work, we propose a deep learning RNN based 

framework for hand activities recognition using a single 

wearable IMU. We have evaluated our RNN-based HAR 

on the standard benchmark dataset Opportunity [11]. We 

focus on six representatives hand activities from the 
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activities in the database. They are “Close Door,” “Open 

Door,” “Close Fridge,” “Open Fridge,” “Clean Table,” and 

“Drink from Cup." In our evaluations, we test the 

performance with standard epoch activity data first. Second, 

we test with noise-added epoch activity data to assess the 

robustness of our proposed system. Finally, we test with 

continuous time series data considering a real application 

scenario.  

The structure of this paper is organized as follows: 

Section 2 describes our proposed RNN-based HAR. 

Section 3 presents the database and our experimental 

results. Finally, we conclude the study in Section 4. 

II. METHODS 

A. Our Proposed RNN-based HAR System 

Considering the temporal sequences of natural human 

hand movements, we adopted RNN based on LSTM cells 

as a classification method in this work. From an IMU 

sensor located on the right wrist, thirteen features channels 

are utilized: three channels from a tri-axial accelerometer, 

tri-axial gyroscope, tri-axial magnetometer, and four 

channels from the quaternion sensor orientation. The input 

to the HAR is a matrix of stacked time series data 

corresponding to these feature channels. Fig. 1 shows our 

IMU- and RNN-based hand activity recognition. The 

system includes two recurrent layers: each one with 256 

LSTM cells and a fully connected layer. Recurrent layers 

use a hyperbolic tangent activation function. The output 

layer uses a Softmax function to obtain the activities 

probabilities for input data. The final output is the 

recognized hand activity context. 

 

Figure 1. The proposed single IMU- and RNN-based hand activity 
recognition system. 

B. Recurrent Neural Network 

RNN offers an advantage to make a decision based on 

current and past inputs. RNN is a specialized neural 

network to process sequential data of 𝑥(1), … , 𝑥(𝜏). One of 

the feature that makes RNN possible to process sequential 

information is the parameter sharing by which the model 

extends the same output to different time steps and reduces 

the amount of data to be learned. Unlike traditional deep 

neural networks, the parameter sharing is important when 

relevant information has to be recognized, if it occurs at 

multiple positions. LSTM proposed by [10] avoids the 

vanishing gradient problem in the training process by the 

backpropagation update algorithm. LSTM creates internal 

paths that help to preserve errors for long durations. A 

variant of the backpropagation algorithm, Backpropagation 

Through Time (BPTT) is used to train recurrent networks 

as described in [12]. BPTT reduces the complexity of the 

parameters update in RNN and allows training networks 

faster. An overview of the internal LSTM memory unit 

structure can be given as follows: the input gate (it) 

determines which value is an update; the forget gate 

determines what information set away; the output gate (ot) 

controls what information is going to be the output of the 

cell. Fig. 2 shows a single LSTM cell with their hidden 

connection (ht), the connection between hidden nodes (ct), 

and internal cell connection (ft). Note that LTSM works 

with time varying signals. Equations (1)~(5) offer a 

mathematical description. Fig. 2 represents the cell 

operations graphically. 

it  = σ(Wxixt  + Whiht-1+bi)                   (1) 

ft  = σ(Wxfxt  + Whfht-1+bf)                   (2) 

ct  = ftct-1+ittanh(Wxcxt  + Whcht-1+bc)            (3) 

ot  = σ(Wxoxt  + Whoht-1+bc)                 (4) 

ht  = ot tanh(ct) (5) 

Where W indicates weight and b indicate bias. 

 

Figure 2. The structure of LSTM cell gates. 

C. Training and Evaluation  

Training and testing were performed on a PC with Intel 

Core i7-2600 CPU, 16 GB RAM, and GPU NVIDIA 

GeForce GT630. Algorithms were developed using a Java 

toolkit, DeepLearning4j [13] for building, training, and 

deploying neural networks. This library supports different 

types of neural networks and allows to compose deep 

neural nets from various shallow nets, such as autoencoders, 

convolutional nets, RNN, LSTM, Bidirectional LSTM, and 

recurrent base networks.  

We trained our RNN-based HAR using early-stopping 

as a regularization method to avoid overfitting. We 

established a set up of 200 training steps for the algorithm 

with an early stop of 20 steps, which means that if no 

improvement is shown in 20 training steps, the algorithm 

would be stopped. Moreover, input data was fed using 

mini-batches of 32. We follow with the evaluating to the 

proposed RNN-based HAR in three different settings. In 

the first state, standard discrete epochs only reflect 

activities of interest. In the second state, the system tested 

corrupted epochs with some external noise. Final 

evaluation simulates continuous time series as a real 

application with streaming values segmented and feeds to 

the HAR.  

Evaluation of the recognition results was obtained 

regarding the accuracy and the mean F1-score:  

Input
RNN
LSTM

2
5

6
 N

o
d

e
s

2
5

6
 N

o
d

e
s

6
 C

lass

RNN
LSTM

OutputSoftmax

Wearable
Device

xy

z

A
ctivity

3 AXIS 
X    Y    Z

3 AXIS 
X    Y    Z

International Journal of Pharma Medicine and Biological Sciences Vol. 6, No. 4, October 2017

115©2017 Int. J. Pharm. Med. Biol. Sci.



  

𝐴𝑐𝑐 =  
1

 𝑐 
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐 + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐

𝑐

 

 

𝐹𝑚 =  
2

 𝑐 
 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑐
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝑐

 

Where c is the current class and  𝑐  is the total number of 

classes. This performance metric is independent of the 

class distribution as suggested in [11], which considers all 

activities relevant.  

III. EXPERIMENT and Results 

A.  Hand Activity Database 

Opportunity database contains information from 

different sensors that measured daily activities in a kitchen. 

Records were obtained using 72 sensors of 10 modalities 

placed in the environment, objects, and subjects. The 

database includes complex naturalistic activities from four 

subjects in six different sessions. The first five sessions 

correspond to daily living activities (ADL) where each 

subject performed household activities without any 

particular protocol. The last record corresponds to a drill 

session that collects a large number of activity instances. 

The hand activity recognition challenge includes an 

18-class classification problem for right arm activities. 

They measure their performance using the F-measure or 

weighted F-measure. Activities labeled in the database 

include Open Door 1, Open Door 2, Close Door 1, Close 

Door 2, Open Fridge, Close Fridge, Open Dishwasher, 

Close Dishwasher, Open Drawer 1, Close Drawer 1, Open 

Drawer 2, Close Drawer 2, Open Drawer 3, Close Drawer 3, 

Clean Table, Drink from Cup, and Toggle Switch. 

In the Opportunity dataset, five Xsense IMUs 

positioned in a custom jacket were used. Each IMU 

contained a tri-axial acceleration sensor, a gyroscope, and 

a magnetic field sensor. This unit communicates with the 

receiver through a serial bus that was connected by USB or 

Bluetooth. The database was created using a dedicated 

laptop carried by the subjects in a backpack. The CRN 

toolbox [14] was used to manage data acquisition, which is 

based on the Portable Operating System Interfaces that 

permits quick construction of complex systems.  

In this work, we used the same guidelines presented in 

the task of multimodal activity recognition for the 

Opportunity challenge [11]. Out of the 18 hand activities, 

we selected eight including Close Door 1, Close Door 2, 

Open Door 1, Open Door 2 Close Fridge, Open Fridge, 

Clean Table, and Drink from Cup. We unified similar 

activities into one class, and end up with Close Door and 

Open Door classes. From the IMU signals in Opportunity, 

with a sliding window of 2-second, we segmented the data 

into epochs with a fixed length and overlap of 50% Our 

proposed IMU- and RNN-based HAR was tested with the 

discrete epoch datasets.  

We trained and tested our RNN-based HAR first by 

creating standard and noise-added epochs from time series 

data. Each epoch was made with a 2-second segment, 

corresponding to activities in all ADL and drill session 

from Subject 1 and ADL1, ADL2, ADL3, and drill 

sessions from Subjects 2 and 3. The test set was made using 

ADL 4 and ADL5 from Subjects 2 and 3. The total number 

of standard discrete epochs in the first validation was 2,393 

for training and 272 for testing for six classes. The 

noise-added activity epochs were derived including the 

ADL and Drill sessions from Subject 4 for training. Subject 

4 data contain artificially added rotational noise, which was 

a part of the task to test robustness to noise in the 

Opportunity challenge. A total number of training epochs 

including noise were 3,613, and the test epochs remain the 

same. We also created a continuous time series data set 

from the drill session of Subject 2. Continuous test dataset 

contains a total of 675 epochs. 

B. Recognition Results with Hand Activity Epoch Data. 

Table I shows the averaged confusion matrix from a 

five-fold test, reporting the overall recognition accuracy of 

80.09% ± 1.57% and the mean and standard deviation of 

an F1 score of 0.789 ± 0.02. The LSTM cells proved to be 

useful to distinguish between similar events like 

Open/Close Door, or Open/Close Fridge. These activities 

are defined by the same basic hand motions but differ in 

their sequence of action. The sensor orientation in 

quaternions also helped to improve the recognition 

accuracy of the system. 

TABLE I. CONFUSION MATRIX FOR RNN-BASED HAND ACTIVITIES 

CLASSIFICATION WITH THE STANDARD EPOCH DATA 

Activities 

Model Classification 

Open 

Door 

Close 

Door 

Open 

Fridge 

Close 

Fridge 

Clean 

Table 

Drink 

from 

Cup 

Open 

Door 
85.37% 9.76% 0.00% 2.44% 0.00% 2.44% 

Close 

Door 
13.16% 84.21% 0.00% 0.00% 0.00% 2.63% 

Open 

Fridge 
0.00% 0.00% 78.72% 17.02% 0.00% 4.26% 

Close 

Fridge 
0.00% 0.00% 11.11% 72.22% 5.56% 11.11% 

Clean 

Table 
3.57% 0.00% 0.00% 7.14% 82.14% 7.14% 

Drink 

from 

Cup 

17.82% 4.95% 0.00% 1.98% 0.00% 75.25% 

 

After evaluating the HAR with the standard epochs, we 

applied the trained system again to the noise-added epochs. 

Table 2 shows the confusion matrix with the recognition 

accuracy of 74.92% ± 0.69% and an F1 score of 0.737 ± 

0.049. Fig. 3 shows a comparison between of the precision 

recognition values with the standard and noise-added 

epochs. Even under the noise, our proposed HAR 

performs with little-diminished accuracy. The results 

show the feasibility for real life logging and gesture 

interface applications. However, noise-added epochs 

created confusion for the hand activities like Open Door 

and Close Fridge. Furthermore, misclassification among 

all other activities (or classes) got more prominent. 
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TABLE II. CONFUSION MATRIX FOR RNN-BASED HAND ACTIVITIES 

CLASSIFICATION WITH THE NOISE-ADDED EPOCH DATA 

Activities 

Model Classification 

Open 

Door 

Close 

Door 

Open 

Fridge 

Close 

Fridge 

Clean 

Table 

Drink 

from 

Cup 

Open 

Door 
75.47% 20.75% 0.00% 1.89% 0.00% 1.89% 

Close 

Door 
19.57% 72.57% 0.00% 0.00% 0.00% 10.87% 

Open 

Fridge 
0.00% 0.00% 81.82% 18.18% 0.00% 0.00% 

Close 

Fridge 
13.04% 0.00% 13.04% 69.57% 0.00% 4.35% 

Clean 

Table 
5.88% 2.94% 8.82% 2.94% 73.53% 5.88% 

Drink 

from 

Cup 

9.32% 4.24% 2.54% 5.08% 0.00% 78.81% 

 

 

Figure 3. Recognition accuracies without noise (left in orange), and 
with noise (right in blue). 

C. Recognition Results with Continuous Activity Data. 

With the previous trained RNN-based HAR, we tested 

the continuous time series data. Fig. 4 shows a portion of 

the model output displaying the difference within the 

ground- truth for various activities performed. Our 

proposed RNN-based HAR achieves the overall accuracy 

of 71.75%. We noticed that most of the confusion occurs 

between transient states between activities. One option to 

reduce confusion from these transient states is to use an 

averaging filter of states: update the current state based on 

the previous and next recognized states. This could make 

smoother transitions in the recognized activity logs.  

 

Figure 4. HAR results with continuoustime series data. Ground-truth 
activities are shown in magenta and the recognized in blue. class 0 

represents null class, class 1 open door, class 2 close door, class 3 open 
fridge, class 4 close fridge, class 5 clean table, and class 6 drink from cup. 

IV. CONCLUSION 

In this paper, a proposed IMU- and RNN-based HAR for 

recognizing six different hand activities of daily living 

were developed using signals from a single IMU sensor 

positioned on the right wrist. The performance of this RNN 

HAR approach holds a potential for hand activity 

recognition using only a single IMU sensor. 

ACKNOWLEDGMENTS 

This work was supported by International Collaborative 

Research and Development Program (funded by the 

Ministry of Trade, Industry and Energy (MOTIE, Korea) 

(N0002252). This material is based upon work supported 

by the Ministry of Trade, Industry & Energy (MOTIE, 

Korea) under Industrial Technology Innovation Program 

(No. 10063300). 

REFERENCES 

[1] L. V. Nguyen-Dinh, D. Roggen, A. Calatroni, and G. Tröster, 

“Improving online gesture recognition with template matching 

methods in accelerometer data,” in Proc. 12th International 
Conference on Intelligent Systems Design and Applications(ISDA), 

Kochi, 2012, pp. 831-836. 

[2] E. Garcia-Ceja, R. F. Brena, J. C. Carrasco-Jimenez, and L. 

Garrido, "Long-term activity recognition from wristwatch 

accelerometer data," Sensors (Basel, Switzerland), vol. 14, no. 12,  

pp. 22500-22524, 2014. 
[3] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity 

recognition using body-worn inertial sensors,” ACM Computing 
Surveys (CSUR), vol. 46, pp. 1-33, 2014. 

[4] F. J. Ordóñez and D. Roggen, "Deep convolutional and LSTM 

recurrent neural networks for multimodal wearable activity 
recognition," Sensors (Switzerland), vol. 16, no. 1, p. 115, 2016. 

[5] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. 

Krishnaswamy, “Deep convolutional neural networks on 
multichannel time series for human activity recognition,” in Proc. 

of the Twenty-Fourth International Joint Conference on Artificial 

Intelligence, 2015, pp. 3995-4001. 
[6] S. Ha, J.-M. Yun, and S. Choi, "Multi-modal convolutional neural 

networks for activity recognition," in Proc. International 

Conference on Systems, Man, and Cybernetics (SMC), 2015, pp. 
3017-3022. 

[7] M. Zeng, et al., “Convolutional neural networks for human activity 

recognition using mobile sensors,” in Proc. 6th International 
Conference on Mobile Computing, Applications and Services, 

Austin, 2014. 

[8] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional, 
and recurrent models for human activity recognition using 

wearables,” in Proc. of International Joint Conference on Artificial 

Intelligence, 2016. 
[9] M. Edel and K. Enrico, “Binarized-BLSTM-RNN based human 

activity recognition,” in Proc. of International Conference on 

Indoor Positioning and Indoor Navigation (IPIN), Alcala de 
Henares, 2016. 

[10] S. Hochreiter, “Long short-term memory,” Neural Computation, 

vol. 9, no. 8, pp. 1735-1780, 1997. 
[11] R. Chavarriaga, et al., “The opportunity challenge: A benchmark 

database for on-body sensor-based activity recognition,” Pattern 
Recognition Letters, vol. 34, no. 15, pp. 2033-2042, November 

2013. 
[12] F. A. Gers and N. N. Schraudolph, “Learning precise timing with 

LSTM recurrent networks,” JMLR, vol. 3, pp. 115-143, 2002. 
[13] D. D. Team. Deeplearning4j: Open-source distributed deep 

learning for the JVM. Apache Software Foundation License. 
[Online]. Available: http://deeplearning4j.org. 

[14] D. Bannach, K. Kunze, P. Lukowicz, and O. Amft, “Distributed 

modular toolbox for multi-modal context recognition,” in Proc. 
International Conference on Architecture of Computing Systems, 

2006, pp. 99-113. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Open
Door

Close
Door

Open
Fridge

Close
Fridge

Clean
Table

Drink
Cup

International Journal of Pharma Medicine and Biological Sciences Vol. 6, No. 4, October 2017

117©2017 Int. J. Pharm. Med. Biol. Sci.



  

Patricio A. Rivera received his B.E. degree in 
Electronics, Automation and Control Engineering 

from University of the Armed-Forces-ESPE, 

Ecuador. He is currently working toward his Ph.D. 
degree in the Department of Biomedical 

Engineering at Kyung Hee University, Republic of 

Korea. His research interest includes artificial 
intelligence, signal processing, and machine 

learning. 

 

 
Tae-Seong Kim received the B.S. degree in 

Biomedical Engineering from the University of 

Southern California (USC) in 1991, M.S. degrees 
in Biomedical and Electrical Engineering from 

USC in 1993 and 1998 respectively, and Ph.D. in 

Biomedical Engineering from USC in 1999. After 
his postdoctoral work in Cognitive Sciences at the 

University of California at Irvine in 2000, he joined 

the Alfred E. Mann Institute for Biomedical 

Engineering and Dept. of Biomedical Engineering at USC as Research 
Scientist and Research Assistant Professor. In 2004, he moved to Kyung 

Hee University in Korea where he is currently Professor in the 

Department of Biomedical Engineering. His research interests have 
spanned various areas of biomedical imaging, bioelectromagnetism, 

neural engineering, assistive biomedical lifecare technologies. Dr. Kim 

has been developing advanced signal and image processing methods, 
pattern classification, machine learning methods, novel medical imaging 

modalities, and rehabilitation technologies. Dr. Kim has published more 

than 300 papers and seven international book chapters. He holds ten 
international and domestic patents and has received nine best paper 

awards. 

 
 

 

 

 

 

 
 

 

 

International Journal of Pharma Medicine and Biological Sciences Vol. 6, No. 4, October 2017

118©2017 Int. J. Pharm. Med. Biol. Sci.




