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Abstract—Several structural variation identification 

approaches have been developed with various 

considerations and merits. As a scientist, it is important to 

choose the suitable tool. Unfortunately, there is a lack of 

gold standards to benchmark these approaches. A 

Structural Variation Benchmarking and Evaluation Tool 

(SV-BET) is proposed, which composed of three main 

components: benchmark creator, mapper, and evaluator. 

We use the proposed tool to evaluate the performances of 

seven available approaches: Pindel, Prism, Delly, Softsearch, 

Softsv, Socrates, and Manta. These tools are based on split-

read-based approaches for detecting structural variations. 

SVBET is tested using the Escherichia coli K12 genome. 

Results show the sensitivity and positive-predictive value of 

detected structural variations and breakpoints for each 

approach. SV-BET can be used to evaluate the performance 

of other SV identification algorithms. 

 

Index Terms—structural variation, split-read, breakpoints, 

next generation-sequencing 

 

I. INTRODUCTION 

The Next-Generation Sequencing (NGS) is a term that 

is used to describe a set of sequencing platforms that 

sequence DNA quickly and cheaply than traditional 

approach. Structural Variation (SV) of a Genome is 

defined as rearrangements that affect at least 50bp of a 

sequence [1]. Studying SVs facilitates understanding of 

the phenotypic variations and the genetic diseases. Some 

SVs are associated with diseases, such as cancers, autism, 

schizophrenia, Parkinson's disease, and Alzheimer [2]. 

They also play an important role in personalized 

medicine studies, which is assumed to be the only way 

for discovering a cure for cancer in many cases [3]. 

A genome Structural Version (SV) can fall into several 

classes: (1) insertion, where a novel sequence is injected 

into the genome; (2) deletion, where a region of the 

sequence is removed; (3) translocation, where a region of 

the sequence is moved to another location; (4) inversion, 

where a region of the sequence is inverted; and (4) Copy-

Number-Variations (CNVs), which involve changing the 

copies of a region via deletion or duplication (duplication 
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may be tandem or interspersed). Some of the literature 

also differentiates between translocation and transposition, 

since two or more chromosomes are involved in 

translocation, while transposition happens within the 

same chromosome. 

Due to the low cost of genome sequencing, a variety of 

methods have been developed to identify SV from the 

whole genome. These approaches use different features 

of NGS datasets to predict SVs. Alkan [1] divides these 

approaches into four classes: Paired-End Mapping (PEM), 

Split-Read (SR), Read-Depth (RD) and de novo 

assembly-based. The first three approaches start with 

mapping the reads to a reference genome. PEM, analyzes 

the distance and orientation of two mapped ends of the 

paired-end reads [4]. SR approaches analyze unmapped 

reads by splitting the read and realigning the splits to 

detect SVs [5]. RD approaches analysis read coverage to 

detect coverage variations over different genome regions 

[6]. De novo assembly approaches, however, build longer 

fragments from the reads first, then, align these fragments 

(contigs) with the reference genome to detect SVs [7]. In 

addition to the aforementioned methods, hybrid 

approaches have been proposed that combine two or 

more of the techniques classified by Alkan's. 

With the lack of gold standard datasets benchmark for 

SV [8], there is a need for SV benchmark and tool 

evaluation. In this paper, a Structural Variation 

Benchmarking and Evaluation Tool (SVBET) is proposed. 

The tool is used to compare and evaluate seven currently 

available split read-based approaches for analyzing whole 

genome sequencing. These approaches are chosen 

because of their ability in detecting SV at base pair level. 

We evaluate the performance of these tools in 

detecting different SV classes and sizes. The evaluation is 

based on measuring sensitivity and runtime using 

different read coverage. Next section describes brie y the 

tools that are evaluated. Section 3 describes SV-BET. 

Section 4 includes the experimental results. Finally, 

Section 5 concludes the paper. 

II. BACKGROUND 

The problem of SV identification using NGS can be 

defined as follows. Given two inputs: (1) reference 
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genome sequence of length g, and (2) donor genome as a 

set of n overlapped sequences (reads) with average read 

length l and coverage c = n.l/g. The required output is a 

set of SVs. Each SV has a type, a location (breakpoints) 

and at least k reads that support it. The SV type could be 

deletion, insertion, transposition, inversion, or CNV 

(tandem duplication, interspersed duplication and 

deletion). Insertion has one breakpoint. Deletion, 

inversion and tandem duplication has two breakpoints. 

Translocation has four breakpoints. 

Except for assembly-based approaches, SV detection 

approaches start with read aligning using available NGS 

aligner, such as BWA [9] and Bowtie [10]. Then, the read 

alignments are analyzed to find SVs. In this work, we 

only consider the algorithms which are based on SR for 

detecting SVs due to their spurious in specify the 

breakpoints at low resolution. 

A. Pindel 

Pindel [11] is the first SR method applied for NGS 

paired-end reads. It applies a pattern growth algorithm to 

search for unmapped read-end fragments in a limited 

genome region that is specified mainly by the orientation 

of perfectly mapped read-end. 

B. Prism 

Prism [12] uses discordant read mapping to reduce 

search space of split-read mapping. A paired end read has 

a discordant mapping if either orientation or distance 

between the two mapped ends are not as expected. Prism 

aligns the unmapped read-ends to the regions that have 

discordant read mapping. 

C. SoftSearch 

SoftSearch [13] avoids realignment in PRISM by 

analyzing overlapped discordant reads with soft-clipped 

reads. Soft-clipped reads are reads with one part is 

mapped to the reference genome and the other part 

unmapped. 

D. Socrates 

Socrates [14] filters the mapped reads to extract long 

soft clips sequences and realign them to the reference 

genome. After that, Socrates formed clusters of these 

reads based on the association of the original alignment 

and re-aligned region. Then, split-read clusters are 

formed based on the original and new alignment regions. 

These clusters are parsed to find cluster pairs that support 

a potential rearrangement. The last step was matching 

short soft clips to support unpaired clusters. 

E. SoftSV 

SoftSV [15] analyzes discordant mapping paired-end 

reads and all split-reads to find the breakpoint sequences. 

It analyzes paired-end read alignments to define 

breakpoint regions. It aligns soft-clipped reads that are 

within breakpoint regions to each other and builds an 

undirected graph of soft-clipped reads as vertices. Both 

reads support the same breakpoint and the soft-clip 

sequences that are match the other read. Then, it searches 

the graph for maximal clique for each SV. 

F. Delly 

Delly [16] uses PEM as a main approach for specifying 

discordant reads then apply SR to refine SV calls. To 

increase sensitivity, Delly supports analyzing SV from 

different paired-end sequencing libraries with various 

insert sizes. 

G. Manta 

Manta [17] constructs break-end association graph of 

breakpoints regions as nodes. The edges connect regions 

that have adjacency evidence and self-edges for indels. 

The edges are analyzed to generate SV candidates. In the 

last step, Manta assembles the SV regions. 

III. PROPOSED SV-BET 

This tool support several utilities that can be used to 

evaluate any SV detection approach as shown in Fig. 1. 

SV-BET consists of three main components: Benchmark 

creator, mapper, and evaluator. The different components 

are illustrated in the following subsections. 

 

Figure 1.  SV-BET main components: Benchmark 

A. Benchmark Creator 

In this part of the tool, a given reference genome is 

read in FASTA format. The outputs are: Benchmark data 

marking the SVs, and the simulated paired-end reads for 

the reference after applying simulated SVs. 

The Benchmark data is generated by introducing SVs 

in a copy of the reference genome based on a user de 

fined parameters: number of simulated genomes, 

maximum number of SVs per genome, read length, read 

depth, standard deviation and error rate. Several SV types 

and sizes are supported. A SV type can be deletion, 

insertion, inversion, duplication, and translocation. 

Duplication events can be either tandem or interspersed. 

Translocations have two forms intertranslocation and 

intra-translocation (known as transposition) The SV sizes 
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are classified into tiny (5-50bp), small (100-200bp), 

medium (500-1000bp), large (2,000-10,000) and extra-

large (20,000-100,000). To prevent the overlapping of 

SVs, The genome is divided into a non-overlapping parts. 

The number of SV per genome, SV locations (part 

number and location in the part), SV types, SV sizes are 

all chosen randomly. In the benchmark data, the original 

genome name, length of original genome, number of SVs, 

length of the simulated genome, SVs types, sizes, and 

locations are recorded for each simulated genome. This 

benchmark data will be fed into the evaluator in order to 

measure the performance of the SV detection tools. 

To generate simulated paired-end mapping reads, the 

wgsim from SAMTools [18] is used. The output is 

paired-end reads that can be used as input for the Mapper 

tool. 

B. Mapper 

In this stage, already known NGS aligners are applied 

to the reference genome and the simulated reads. We use 

3 aligners BWA [9], Bwa-mem [19], and Bowtie 2 [10]. 

For each SV caller, we use the same alignment tool that 

was used in its original paper, see Table I. 

TABLE I.  SPLIT READ-BASED APPROACHES (DEL: DELETION, INS: 
INSERTION, INV: INVERSION, DUP: DUPLICATION, TRA: 

TRANSLOCATION, VCF: VARIANT CALL FORMAT [15], TSV: TAB 

SEPARATED VALUES) 

Tool Input 
Read 

aligner 
SV classes Output 

Pindel BAM Bwa 
DEL, INS, INV, 

DUP, TRA 
VCF 

Socrates BAM Bowtie2 Breakpoints only TSF 

Delly BAM Bwa 
DEL, DUP, INV, 

TRA 
VCF 

Prism SAM Bwa 
DEL, INS, INV, 

DUP 
TSF 

SoftSearch BAM Bwa 
DEL, INS, INV, 

DUP, TRA 
VCF 

SoftSV BAM Bwa-mem 
DEL, INV, DUP, 

TRA 
TSF 

Manta 
BAM, 
CRAM 

Bwa-mem 
DEL, INS, INV, 

DUP, TRA 
VCF 

C. Evaluator 

The evaluator tool takes read alignments and the 

corresponding reference index as inputs. It then: 1) call 

SV detection tools, 2) parse their output to a unique 

format, 3) compare and evaluate with respect to the 

created benchmark. 

The SV detection tools are executed on the read 

alignments, which are generated by the same aligner used 

in the original work of each tool. However, configuring 

SV detection tools and parsing the output of SV calls is 

often not trivial. Some tools require prerequisite tools, for 

example Softsv requires BAMTools 

(https://github.com/pezmaster31/bamtools). Others 

require configuration files to be set such as Pindel and 

Manta. 

The output of each SV prediction tool is different as 

shown in Table I. Although, some of SV callers use 

Variant Call Format (VCF) [20], the way of recording 

variants are different. Thus, in our tool, the output of the 

SV callers for each tool are parsed to count the SVs that 

have been identified correctly and incorrectly into a 

unique format that allow us to compare with our 

generated benchmark data. This unique format records 

reference genome name, SV types and the corresponding 

breakpoints. 

In order to compare and evaluate a given SV tool, two 

measures are used: the sensitivity and Positive Predictive 

Value (PPV) as in the equations 1 and 2 where TP is the 

number of true positives, FN is the number of false 

negatives and FP is the number of false positives.. The 

tool evaluates the breakpoint accuracy and the SV 

accuracy. A threshold is used to define the regions of the 

breakpoints. This threshold can be tuned according to the 

required distance. A breakpoint prediction is a true 

positive if it is at a real breakpoint region without 

considering the correctness of SV type. PPV and 

sensitivity are used to evaluate SV type prediction. The 

SV type is true positive if and only if (1) the region of the 

predicted variant is intersect with a real variant region; 

and (2) the SV type is predicted correctly. 

 Sensitivity =
TP

TP+FN
                            (1) 

 𝑃𝑃𝑉 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                 (2) 

IV. RESULTS 

The Escherichia coli K12 is used as a reference 

genome, available from the UCSC website 

(http://microbes.ucsc.edu/cgi-

bin/hgGateway?db=eschColi_K12). This genome is 

chosen because it has a manageable size (about 4.6 Mpb). 

Two datasets are created as shown in the Table II. The 

first dataset is used to measure SV breakpoints accuracy 

and runtime of the SV callers at different read coverage. 

It has 4 deletions, 0 insertions, 1 inversions, 3 tandem 

duplications 3 and 2 translocations. The second Dataset is 

used to compute PPV and sensitivity of SV type 

predictions. The SV events in dataset 2 are 43 deletions, 

63 insertions, 44 inversions, 43 tandem duplications, 57 

interspersed duplication, and 52 translocations. The 

maximum number of SV per genome used in this 

experiment is 5. In generating paired-end reads, we use 

0.01% error rate and standard deviation equals 30. The 

SV callers are called using default parameters. A 64-bit 

operating system (Ubuntu 14.04 LTS) with 3.7GiB of 

memory and Intel Core (i5-4210U CPU, 1.7GHz x4) is 

used to run the all SV callers, except Manta. Due to the 

limited memory of this system, Manta was executed on 

another system with higher CPU and memory. 

TABLE II.  STATISTICS SETUP FOR GENERATING BENCHMARK USING 

ESCHERICHIA COLI K12. 

Dataset No. 

genomes 
No. SVs Coverage 

Read 

Length 

1 5 13 [7,15,30] 100 

2 100 302 7 100 

 

Dataset 1 is used to evaluate the breakpoints sensitivity 

Using 3 different coverage values 7, 15 and 30. The SV 

caller, in our case, is based on split-read analysis that 

International Journal of Pharma Medicine and Biological Sciences Vol. 5, No. 4, October 2016

©2016 Int. J. Pharm. Med. Biol. Sci. 219

https://github.com/pezmaster31/bamtools


should be able to detect the SV breakpoints with few 

deviation from the real breakpoints. Therefore, in this 

experiment, the threshold was tuned to 6bp. Fig. 2 shows 

sensitivity results of breakpoints for three coverage 

values, 7, 15, and 30. The graph illustrates that Pindel and 

Softsv have the highest sensitivity in detecting 

breakpoints. The highest sensitivity of Pindel and Softsv 

are at the read coverage values 15 and 30 respectively. 

However, there is no significant effect of increasing read 

coverage on other tools. 

 

Figure 2.  Breakpoints detection sensitivity at coverages (7, 15, and 30) 
and the maximum distance from real breakpoint is 6bp. 

 

 

 

Figure 3.  The sensitivity and PPV for deletions (top), duplications 

(middle) and inversions (bottom). 

Dataset 2 was used to evaluate SV callers in detecting 

three SV types: deletion, inversion and tandem 

duplication, see Table II. Fig. 3 shows the PPV and 

sensitivity for each SV type. Prism and manta have the 

highest sensitivity in detecting deletions. For detecting 

inversions, Softsv, Softsearch and Delly have 100% 

sensitivity. Pindel has the highest sensitivity in detecting 

duplications with the lowest PPV. Fig. 4 summarizes the 

overall sensitivity of detecting all three events. 

 

Figure 4.  The overall SV callers sensitivity for deletions, inversions, 

and duplications. 

To estimate runtime, we run the SV callers on Dataset 

2. Table III shows the runtime of the SV callers for 

different coverage values, 7, 15, and 30. The runtime of 

Manta is not recorded here, because of the memory 

limitation of the system. 

TABLE III.  RUNTIME IN SECONDS FOR EXECUTING SV CALLERS ON 

DATASET 1 

Tool 
Coverage 

7 15 30 

Prism 29.91 63.331 123.195 

Pindel 916.99 2015.623 60336 

Softsearch 18.236 36.458 68.892 

Softsv 1.638 3.212 6.249 

Socrates 28.007 35.292 52.822 

Delly 11.772 22.818 42.421 

V. CONCLUSION 

The lack of the gold standard benchmark makes the 

comparison of SV detection tools tedious. In this paper, 

SV-BET is proposed as a tool that can be used for 

creating benchmarks and evaluating different SV callers. 

It composes of three main components benchmark creator, 

mapper, and evaluator. We also applied the proposed SV-

BET to evaluate and compare seven split- read based SV 

callers. With using the default settings for SV callers, the 

initial results show that Pindel is the highest sensitivity in 

detecting SV breakpoints and predicting SV types. 

However, Pindel scores the lowest PPV. The current 

implementation of SV-BET evaluates deletion, inversion 

and duplication calls for split-read based approaches. SV-

BET can be easily extended to evaluate other SV classes 

and other SV callers based on the SV length. 
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