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Abstract—Skull stripping is an important preprocessing step 

in many medical image applications. Deformable models are 

powerful as they provide robust abilities to deform contours 

under the guidance of geometric properties. In particular, 

the charged fluid model has been shown its superiority over 

many existing deformable models. This paper is in an 

attempt to propose a new skull stripping algorithm based on 

the charged fluid model. To improve the segmentation 

accuracy, a new image balancing coefficient of using the 

local intensity difference along the normal line of the 

evolving curve is introduced. Stimulated by the concept of 

the Mumford-Shah model, the other balancing coefficient 

obtained from a global intensity difference between the 

interior and exterior of the evolving contour is also 

introduced to automate the segmentation process. We have 

adopted the BrainWeb and internet brain segmentation 

repository (IBSR) image datasets to evaluate this new 

algorithm. Experimental results indicated that our method 

produced high segmentation accuracy across a wide variety 

of brain magnetic resonance (MR) images, which is 

promising in many MR image processing applications.  

 

Index Terms—segmentation, MRI, charged fluid model, 

deformable model, skull stripping 

 

I. INTRODUCTION 

Skull stripping is an important preprocessing step in 

many research and clinical applications. It aims to 

remove non-brain tissues (e.g., skull, scalp, and dura) and 

retain brain parenchyma in MR images. Skull-stripping 

brain MR images has been challenging due to the 

complexity of human brain structure in both health and 

disease across a large number of subjects. Nevertheless, 

many researchers have proposed different methods 

worldwide. 

One famous approach is the brain surface extractor 

(BSE), which is developed based on the combination of 

edge detectors and morphological operators [1]. In their 

approach, a Marr Hildreth edge detector is first used to 

identify anatomical boundaries, followed by a sequence 

of morphological operators to separate connected tissues 

into individual component regions. Finally, the brain 

tissue is extracted based on the largest central connected 

component. 

                                                           
 Manuscript received January 2, 2015; revised March 2, 2015.  

Deformable models apply physical and image forces to 

push and pull the contour toward an object’s boundary. 

Parametric active contours, also known as snakes, are one 

of the well-known deformable models proposed by Kass 

et al. [2]. Brain extraction tool (BET) is one of the 

successful implementations of snakes [3]. A set of 

parameters, including morphological and image-based 

forces, are applied in the tangential and normal directions 

of the interface to guide the evolution. However, edge-

based deformable models are usually prone to noise 

influence and low contrast problems and are sensitive to 

initial contour settings. 

The charged fluid model (CFM) [4] has been shown 

less critical than many existing deformable models in 

segmenting objects with sharp corners and cusps. This 

paper is in an attempt to propose a new brain extraction 

algorithm based on the charged fluid model. The ultimate 

goal is to establish a more robust brain extraction 

algorithm that overcomes disadvantages of many existing 

methods.  

 

Figure 1.  Charged fluid model. 

II.  ADAPTIVE DEFORMABLE MODEL 

A. Review of Charged Fluid Model 

As shown in Fig. 1, the CFM is based upon the theory 

of electrostatics rather than that of curve evolution and 

geometric flows for image segmentation. The fluid 

elements are connected to one another by 4-connectivity 

when they advance. The charged fluid, behaving like a 

liquid, can be influenced by internal electric forces of 

repulsion as well as external forces from the image data. 

Suppose that the charge distribution of an electrostatic 

system is known, the electric potential Φ  can be 

calculated through Poisson’s equation as 
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  (1) 

where  is the charge density. The corresponding 

electric field E can then be computed in terms of the 

scalar potential using 

                       (2) 

To handle the problems of using multiple charged 

fluids, the electric potential for each charged fluid is 

normalized through Poisson’s equation as 

  (3) 

where  is the normalized electric potential for the 

charged fluid j,  is the mean electric potential in the 

charged fluid j, and  is an arbitrary positive constant. 

The corresponding normalized charge density is then 

defined as 

  (4) 

Therefore, the overall system is governed by the 

modified Poisson’s equation 

  (5) 

where  is the normalized electric potential and  is 

the normalized charge density of the overall system at 

each time step. Finally, the electric field Eele is directly 

computed using the normalized electric potential 

  (6) 

To interact with the image data, the image gradient 

potential is defined as 

  (7) 

where  is the modulus of the smoothed image gradients 

and  is the maximum modulus in the computation 

domain. The corresponding image field Eimg is defined as 

                         (8) 

B. Improvement of Charged Fluid Model 

To improve the brain extraction accuracy, two new 

different image forces are introduced. Stimulated by the 

concept of the Mumford-Shah model [5], we first define a 

new coefficient α as 

               ]),([]),([ 21 cyxIcyxI   (9) 

where I(x, y) is the image intensity of the fluid element at 

(x, y), C1 and C2, depending on the curve, are the 

averages of inside the curve and respectively outside the 

curve using 
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To attract the contour to the brain surface and to stop 

the contour from leaking through the boundary, a brain 

texture force is defined as [3]: 

  (11) 

where h2% is the intensity threshold separating the lower 

2% of the cumulative histogram and h1 is the threshold 

separating the intensity of skull from the local maximum 

intensity Imax using 

  (12) 

where Th is a constant equal to 0.5. In (11), Imax and Imin 

are defined as 

 (13) 

 (14) 

where hM is the median intensity calculated in the brain 

region within the contour and I(n) is the intensity of a 

pixel on the line n pixels away from the origin. More 

specifically, Imin and Imax are the local minimum and 

maximum intensities of pixels on a line that starts from 

the contour and points inward to the brain in the normal 

direction; and d1 and d2 are the lengths of the line used to 

find Imin and Imax, respectively. Finally, we incorporate 

these two new coefficients into the governing equation to 

create a new effective field as 

 (15) 

where β is a weighting factor for balancing between the 

electric and image fields. 

C. Slice-by-Slice Segmentation 

As shown in Fig. 2, the proposed adaptive skull 

stripping algorithm consists of five major phases. First, 

compute the smoothed images using the Gaussian filter 

for the entire volume. Then, place the initial contour 

around the center slice to start the segmentation process. 

In the charge distribution procedure, the electric field is 

computed when an electrostatic equilibrium is achieved. 

Before the front deformation procedure, the system 

automatically computes the coefficients in (9) and (11) to 

advance the contour toward the brain boundaries using 

(15). These procedures are repeated until the entire 

volume is segmented. 
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Figure 2.  Flowchart of the adaptive skull stripping algorithm. 

 

TABLE I.  PERFORMANCES EVALUATION ON THE BRAINWEB IMAGE DATASETS USING THREE DIFFERENT COEFFICIENTS: CONFORMITY (𝐾𝐶), 
SENSITIVITY (𝐾𝑆𝑡) AND SENSIBILITY (𝐾𝑆𝑏) 

 KC (%) KSt (%) KSb (%) 

Pn 1 97.30 98.52 98.81 

Pn 3 97.30 98.56 98.77 

Pn 5 97.10 98.37 98.77 

Pn 7 97.12 98.44 98.72 

Pn 9 97.10 T98.53 98.60 

Avg.±Std. 97.18±0.09 98.48±0.06 98.73±0.07 

 

III. EXPERIMENTAL RESULTS 

We have adopted the BrainWeb: Simulated Brain 

Database (SBD) [6] image data of T1-weighted MR 

image volumes with various levels of noise and the 

internet brain segmentation repository (IBSR) datasets [7]. 

Three different performance measure coefficients were 

used to evaluate the proposed algorithm [8]: 

Conformity:   (16) 

Sensitivity:   (17) 

Sensibility:   (18) 

where TP represents true positives, TN true negatives, FP 

false positives, FN false negatives of the segmentation 

union. All coefficients have a maximum score of 100% 

and the higher the better. 

Fig. 3 shows representative images of the BrainWeb: 

SBD data with different noise levels. The corresponding 

segmentation results are shown in Fig. 4. Table I presents 

the performance evaluation results of segmented images 

with various noise levels from 1% to 9% in the BrainWeb 

datasets. Each dataset consists of 60 sequential slices with 

3mm slice thickness. Obviously, all evaluation 

coefficients were pretty high and consistently close to 

100% regardless of different noise levels. Representative 

segmentation results on the IBSR datasets are shown in 

Fig. 5, where the contours were precisely located on the 

brain surfaces on each slice. 

IV. CONCLUSIONS 

We have introduced a new skull stripping algorithm 

based on an improved charged fluid model. To adapt the 

complexity of the brain structure, two new balancing 

coefficients were introduced and incorporated into the 

governing equation. A wide variety of brain MR images 

from the BrainWeb and the IBSR datasets were used to 

evaluate the proposed framework. Experimental results 

indicated that our method successfully stopped the 

leakage comparing to the traditional charged fluid model 

and produced high segmentation accuracy across a 

number of MR image volumes. We believe that this new 

skull stripping algorithm is promising in providing 

accurate segmentation results in a wide variety of MR 

image processing applications. 
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Figure 3.  Original images of the BrainWeb: SBD datasets. Noise level: (a) 1%; (b) 3%; (c) 5%; (d) 7%. (e) 9%. 

 

 
Figure 4.  Visual segmentation results of the BrainWeb: SBD datasets in Fig. 3. Noise level: (a) 1%; (b) 3%; (c) 5%; (d) 7%; (e) 9%. 

 

 
Figure 5.  Visual segmentation results of representative slices on the IBSR datasets. 
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