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Abstract—Noise removal in Magnetic Resonance (MR) 

images is important and essential for a wide variety of 

subsequent processing applications. Among the abundant 

denoising algorithms, the bilateral filter has been widely 

used in many image preprocessing procedures. However, it 

requires laborious tuning of parameters to obtain optimal 

filtering results, which is tedious and time-consuming. To 

address this problem, this paper is in an attempt to 

automate the bilateral filter based on an artificial neural 

network. Seven most significant attributes among 60 image 

attributes are used as the network input arguments. The 

BrainWeb image data with various scenarios of noise level, 

intensity non-uniformity, and slice thickness were adopted 

to evaluate this new system. Experimental results indicated 

that our automatic bilateral filter accurately predicted the 

denoising parameters and effectively removed the noise in 

MR images.  

 

Index Terms—bilateral filter, MRI, neural networks, 

denoise, Automation 

 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) has been one of 

the most frequently used medical imaging modalities due 

to its high contrast among different soft tissues, high 

spatial resolution across the entire field of view, and 

multi-spectral characteristics. In MR image analysis, 

noise is one of the main sources of quality deterioration 

not only for visual inspection but also in computerized 

processing such as tissue classification, segmentation and 

registration. Consequently, noise removal in MR images 

is important and essential for a wide variety of 

subsequent processing applications. 

Over the decades, Gaussian filters have been widely 

used in many MR image processing applications for its 

simplicity [1]. Although the Gaussian filter smoothes 

noise quite efficiently edges are blurred significantly. To 

preserve the sharpness, the bilateral filter [2] has been 

proposed that performed effectively in MR image noise 

suppression and it has been the object of further studies 

[3]. However, the bilateral filter requires laborious tuning 

of parameters to obtain optimal filtering results, which is 

tedious and time-consuming. Automation of these 
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parameters through artificial intelligence techniques will 

be highly beneficial. To address this problem, this paper 

proposes to automate the bilateral filter based on an 

artificial neural network.  

II.  RELATED WORKS 

A. Bilateral Filter 

As shown in Fig. 1, the idea of the bilateral filter [2] is 

to combine gray levels based on both the geometric 

closeness and photometric similarity that is in favor of 

near values to distant values in both domain and range. 

More specifically, let be the location of the pixel 

centered at a (2N+1) × (2N+1) neighborhood and 
 

  (1) 

 

be the pixels in the neighborhood of . The 

weighting functions for the spatial and radiometric 

components are defined respectively as 
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where is the intensity value at the given position. 

The ensemble weight in the bilateral filter is the product 

of W
S
 and W

R
: 
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In practice, each pixel is filtered using normalized 

weights to obtain the filtered image using 
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Figure 1.  Illustration of the bilateral filter [2]. 

 

B. Gray Level Co-Occurrence Matrix 

The gray level co-occurrence matrix (GLCM) [4] 

describes some easily computable textural features based 

on gray tone spatial dependencies using 
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where M(i, j) is the quantized gray tone at position (i, j), 

Wx and Wy are the dimension of the resolution cells of 

the image ordered by their row-column designations, W(x, 

y) is the gray level value in the cell, dx and dy are the 

spatial relation between two adjacent pixels defined by 

the angle θ and distance d from the cell origin. This 

texture-content information is then normalized to obtain 

the matrix of relative frequencies P(i, j) as 

  (6) 

The derived textural features based on (6) include 

angular 2
nd

 moment (ASM), contrast (CON), entropy 

(ENT), homogeneity (HOM), dissimilarity (DIS), mean, 

standard deviation (SD), and correlation (COR). 

C. 2-D Discrete Wavelet Transform 

By wavelet transform, we mean the decomposition of 

an image with a family of real orthonormal bases 

obtained through translation and dilation of a kernel 

function [5], [6]. Four subbands, namely LL1, LH1, HL1, 

and HH1, are obtained by the 1
st
 order horizontal and 

vertical transformations sequentially. To obtain more 

detail information, the LL1 subband is further 

decomposed into four 2
nd

 order subbands, LL2, LH2, 

HL2, and HH2 as shown in Fig. 2. After decomposing the 

images, the local wavelet coefficients in each subband 

can be computed based on the following energy equations 

[7]: 

Norm-1 energy:   (7) 

Norm-2 energy:   (8) 

Standard deviation:  (9) 

where x represents the subband under consideration, M 

and N represent the dimension of the subband with 1 ≤ m 

≤ M and 1 ≤ n ≤ N, and  is the arithmetic mean of 

. 

III. METHODS 

The proposed automatic bilateral filtering associated 

with the neural network framework consists of two major 

phases: training and testing, as shown in Fig. 3. 

A. Feature Extraction 

Three different categories are used to extract image 

features as shown in Fig. 4: 

 Image statistics: compute the mean intensity (Mean), 

standard deviation (SD), variance (VAR), and entropy 

(ENT) of the input gray-level image. 

 GLCM: first compute the difference image In = I - ID, 

which is the difference between the input image I and 
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its Gaussian filtered image ID. Then compute the 

textural features of GLCM using In with d = 1. 

 2-D DWT: first compute the normalized image I’ 

based on Eq. (10). Then take the one and two stages 

of I’ for the wavelet features using the Haar wavelet 

transform. Finally, compute the wavelet energy 

coefficients using (7)-(9) 

                     (10) 
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Figure 2.  Illustration of 2-D DWT. 

 
Figure 3.  Flowchart of the proposed scheme. 
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Figure 4.  Image feature extraction: (a) image statistics, (b) GLCM, and (c) 2-D DWT. 

 

'

2 1/2

1 1

( , )
( , )

1
( ( , ) )

M N

k l

I i j
I i j

I k l
MN  



 

MR 

image

(A)Feature extraction

preprocessing

(C)The parameters of 

the bilateral filter 

training

(B)Feature selection

(D)Back-propagation neural 

network training

the parameters training system

Training

Testing

MR 

image

The best 

combinations of 

features 

The neural network 

model of predictable 

parameters

Bilateral filter
MR image 

reconstruction

Optimal parameters

International Journal of Pharma Medicine and Biological Sciences Vol. 4, No. 1, January 2015

©2015 Int. J. Pharm. Med. Biol. Sci. 41



B. Feature Selection 

There are 60 different image features that are obtained 

based on the three feature extraction methods in every 

image. To obtain the most significant attributes, a paired-

samples T-test [8], [9] is then applied to each individual 

image features to evaluate the ability of discrimination in 

two categories: Noise level and slice position. The 

evaluation is based on the distinguishing ability between 

noise levels, intensity distributions, and anatomical 

geometries according to the average p-value. 

C. Optimal Parameter Selection 

As described previously, there are three parameters in 

the bilateral filter: N, σS and σR. A brute-force method is 

conducted to find the optimal parameter settings on each 

individual image based on the peak signal-to-noise ratio 

(PSNR). The higher the PSNR values the better the 

restoration results. These optimal parameters are then 

used in the learning stage to train the neural network 

system as well as for the evaluation of the proposed 

automatic bilateral filtering system. 

D. Back Propagation Network 

The back propagation network (BPN) [10] with 

multilayer feedforward and error back propagation is 

adopted for the training of the automatic bilateral filtering 

system and for the testing stage also. 

TABLE I.  T-TEST RESULTS BASED ON THE P-VALUE: NOISE LEVEL 

Classification: noise level 

p-value < 0.05 

p-value Feature 

[0.01, 0.02) CON(90 ﾟ) 

[0.02, 0.03) DIS(90 ﾟ) 

[0.03, 0.035) 

e3(HL1), SD(x, 0 ﾟ), SD(y, 0 ﾟ), SD(x, 90 ﾟ), 

SD(y, 90 ﾟ), SD(x, 135 ﾟ), SD(y, 135 ﾟ), 

SD(x, 45 ﾟ), SD(y, 45 ﾟ), ASM(90 ﾟ), CON(135 ﾟ) 

[0.035, 0.04) 
ASM(45 ﾟ), CON(0 ﾟ), ASM(135 ﾟ, 0 ﾟ), 

HOM(45 ﾟ) 

[0.04, 0.05) CON(45 ﾟ), DIS(135 ﾟ), ENT(0 ﾟ), HOM(135 ﾟ) 

p-value ≥ 0.05 

p-value Feature 

[0.05, 0.07) 
ENT(135 ﾟ, 45 ﾟ), DIS(0 ﾟ), HOM(0 ﾟ), DIS(45 ﾟ), 

ENT(90 ﾟ), COR(0 ﾟ, 45 ﾟ, 90 ﾟ, 135 ﾟ) 

[0.07, 0.09) 
e3(HH1, HH2), e1(HL1), HOM(90 ﾟ), 

e1(HH1), e2(HH1), SD, VAR 

[0.09, 0.2) e1(HH2), ENT, e3(LL2, LL1), e1(LH1), e3(LH1) 

[0.2, 0.4) 
e2(HL2, LH2), e1(HL2), e2(HL1), e3(HL2), 

e2(HH2, LL2, LL1) 

≥ 0.4 e1(LL1, LL2), e3(LH2), Mean, e1(LH2), e2(LH1) 

 

IV. EXPERIMENTAL RESULTS 

We have adopted the famous BrainWeb [11] image 

data of T1-weighted 1mm and 5mm MR image volumes 

with various levels of noise and intensity non-uniformity 

to evaluate the proposed system. Table I and Table II 

present the order of significance based on the average p-

value of each individual feature using the T-test in noise 

level and slice position, respectively.  

First, the image features were inserted into the 

classification tree of the classification and regression tree 

(CART) algorithm [12] for evaluation. Seven most 

significant image features from the 60 candidate features 

were obtained based on the average p-value using the T-

test in noise level and slice position: CON(90 ﾟ), DIS(90

ﾟ), e3(LH1), e1(LL2), e3(HL2), e1(LL1), and e2(HL1). 

Subsequently, these features were used as the network 

input arguments in both training and testing phases. 

Fifteen combinations of five noise levels and three 

intensity non-uniformities of normal scans with the same 

1 mm slice thickness were used as the training dataset. 

Other different datasets with 1 mm / 5mm normal and 

multiple sclerosis scans were used as the testing 

evaluation. Table III presents the representative 

performance of our algorithm on the 1 mm multiple 

sclerosis dataset in comparison with the optimal results 

based on the PSNR values. 

TABLE II.  T-TEST RESULTS BASED ON THE P-VALUE: SLICE 

POSITION 

Classification: slice position 

p-value < 0.05 

p-value Feature 

[0.01, 0.02) e1(LL2) 

[0.02, 0.03) e3(LH2), e1(LL1), e2(LH1, LH2) 

[0.03, 0.035) e3(HL2), Mean, e1(LH2) 

[0.035, 0.04) e2(HH2, LL1) 

[0.04, 0.05) e2(LL2), e1(HL2) 

p-value ≥ 0.05 

p-value Feature 

[0.05, 0.07) e2(HL2) 

[0.07, 0.09) e2(HL1), e3(LL1) 

[0.09, 0.2) e3(LL2), e1(LH1), VAR, SD, e1(HH2) 

[0.2, 0.4) e3(HH2, LH1), e1(HL1), ENT, e3(HL1) 

≥ 0.4 

e2(HH1), SD(x, 135 ﾟ), SD(y, 135 ﾟ), SD(x, 90 ﾟ), 

SD(y, 90 ﾟ), COR(45 ﾟ, 135 ﾟ), SD(x, 0 ﾟ),  

SD(y, 0 ﾟ), SD(x, 90 ﾟ), SD(y, 90 ﾟ), COR(0, 90 ﾟ), 

e1(HH1), e3(HH1), CON(45 ﾟ, 135 ﾟ), 

DIS(45 ﾟ, 135 ﾟ), ENT(45 ﾟ, 135 ﾟ, 90 ﾟ, 0 ﾟ), 

HOM(135 ﾟ, 45 ﾟ), CON(0 ﾟ, 90 ﾟ), 

ASM(135 ﾟ), DIS(0 ﾟ), ASM(45 ﾟ), DIS(90 ﾟ), 

ASM(0 ﾟ, 90 ﾟ), HOM(90 ﾟ, 0 ﾟ) 

 

V. CONCLUSIONS 

We have introduced a fully automatic system for bilateral 

filtering MR images based on a back-propagation neural 

network. We have systematically investigated significant 

attributes from various image features and textures as the 

network input arguments to facilitate subsequent 
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automation process. A wide variety of simulated T1-

weighted MR images from the BrainWeb dataset were 

used to train and evaluate the proposed automatic 

filtering system. Experimental results indicated that our 

automatic bilateral filter accurately predicted the 

denoising parameters and effectively removed the noise 

in MR images. We believe that this new automatic 

filtering system is promising in a wide variety of MR 

image preprocessing applications that require automation. 

TABLE III.  COMPARISONS BETWEEN THE AUTOMATIC FILTERING 

RESULTS (PSNR_A) AND THE OPTIMAL FILTERING RESULTS (PSNR_O) 

FOR THE DATASET OF 1MM MULTIPLE SCLEROSIS SCANS 

Noise 3% 5% 

Slice PSNR_A PSNR_O  PSNR_A PSNR_O  

1 34.2511 34.2468  29.3060 29.3092  

21 35.2634 35.2804  30.8922 30.8894  

32 32.3336 32.3351  28.0481 28.0490  

55 35.0416 35.0471  31.2533 31.2657  

66 34.4042 34.4034  31.1722 31.1740  

96 33.3780 33.3779  30.5580 30.5585  

105 35.4922 35.4881  30.8620 30.8629  

118 33.8897 33.8964  30.1769 30.1767  

126 34.8893 34.9016  30.6338 30.6358  

140 33.9056 33.9137  29.9117 29.9199  

Error =0.0174±0.0143 (%) =0.0108±0.0121 (%) 
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