Research Paper

PHYTOCHEMICAL AND PHARMACOOGICAL REVIEW OF FRACTURE HEALING DRUG ASTHISAMHARAK USED IN ANCIENT INDIAN MEDICINE

Rasale P L1*

*Corresponding Author: Rasale P L | prashant.rasale@rediffmail.com

INTRODUCTION

Cissus quadrangularis L. is a succulent plant of family Vitaceae commonly found in tropical and subtropical xeric wood. It is a fleshy, cactus-like liana widely used as a common food item in India. The plant is prescribed in the ancient Ayurvedic literature as a general tonic and analgesic, with specific bone fracture healing properties. The plant is believed to be useful in helminthiasis, anorexia, dyspepsia, colic, flatulence, skin diseases, leprosy, hemorrhage, epilepsy, convulsion, haemoptysis, tumors, chronic ulcers, swellings. Following various folk claims for cure of various diseases, efforts have been made by researchers to verify the efficacy of the plant through scientific biological screening. The scrutiny of literature revealed some notable pharmacological activities of the plant such as antioxidant, free radical scavenging, anti microbial, anti bacterial, bone healing, anti ulcer, analgesic, anti inflammatory and diuretic, presented in this review such that the potential use of the plant either in pharmaceutics or as an agriculture resource can be evaluated. The present review is an attempt to highlight phytochemicals, various traditional uses as well as pharmacological reports on *Cissus quadrangularis* L.

Keywords: Asthisamharak, Hadjod, Bhagna, *Cissus quadrangularis*

1 Department of Shalyatantra, Govt Ayurved College Vazirabad Nanded.
broadly ovate, obtuse. Flowers are in shortly peduncle cymes with spreading umbellate branches. Calyx is cup shaped, truncate or very obscurely lobed. Petals are 4, ovate-oblong, short, stout. Berry is obovoid or globose, scarcely 6 mm, long apiculate, red when ripe, 1- (very rarely 2) seeded (Raipal, 2005). The whole plant including all parts such as stems, leaves, roots are documented to possess medicinal properties in ethnobotanical surveys conducted by ethnobotanists in traditional system of medicine. The present review will possibly help to bridge between traditional claims and modern therapy on *Cissus quadrangularis* L. and also pinpoints unexplored potential of it.

CLASSIFICATION OF THE PLANT

Kingdom: Plantae or Green Plants
Subkingdom: Tracheobionta: Vascular Plant
Super division: Spermatophyta: Seed bearing plants
Division: Angiosperm (Flowering Plants)
Class: Dicotyledoneae: Dicots; Angiosperms; Flowering plants; **Subclass:** Rosidae Order: Rhamnales Genus: *Cissus* L.: (Treebine) Trees with simple, entire leaves. Stems and branches are acutely angled or winged. Flowers are disposed in terminal panicles, small and polygamous. Calyx is short, entire and deciduous. Petals are 4-5, imbricate. Stamens are as many as the petals, with only 1 functional stamen. Ovary is unilocular, with a solitary ovule; style is filiform. Fruit is a large succulent drupe. Species: *quadrangularis* Linn. (Veldt-grape) Stems and branches acutely winged. Botanical name: *Cissus quadrangularis* Linn. Family: Vitaceae: Grape, Virginia creeper; usually lianas with alternate leaves, often palmately lobed or compound, sometimes pinnate. The leaf is opposed by a tendril (modified inflorescence developing from displaced bud) that attaches to support by twining or by forming adhesive discs; nodes usually swollen. The flowers are 4 or 5-merous, petals forming a cap that falls off when the flower opens; fruit a berry; seeds 4, with prominent cord like raphe extending to a chalazas knot.

Classical Name: Asthisamhari
Sanskrit Names: Asthisamhari, Vajravalli, Asthishrinkhala, Asthisamhara, Kandavalli, Vajrangi, Asthisamyojaka.

Distribution: Found throughout the hotter parts of India alongside hedges, neighboring countries like Pakistan, Bangladesh, Shrilanka and Malaysia. It can be cultivated in plains coastal areas, jungles and wastelands up to 500 m elevation. Plant is propagated using cuttings

VERNACULAR NAMES

Hindi: Hadjod, Hadjora, Hadsankari, Hadsarihari, Kandvel Guj: Hadsankal, Hadsand, Chodhari
Tam: Pirantai, Vajravalli
Tel.: Nalleru, Nulleratiga, Vajravalli
Urdu: Hrajora, Hadsankal
Oriya: Hadabhanga
Beng: Har, Harbhanga, Hasjora, Horjora
Eng.: Edible stemmed wine, Bonesetter, Adamant creeper
Kan.: Mangarahalli
Mal.: Peranta, Cannalamparanta

Phytochemistry

Phytochemical studies of *Cissus quadrangularis* have shown the presence of various versatile...
constituents such as flavonoids, triterpenoids, Vitamin C, stilbene derivatives and many others, e.g., resveratrol, piceatannol, pallidol, perthenocissin and phytosterols. Out of which ascorbic acid, triterpene, β-sitosterol, ketosteroid, two asymmetrical tetracyclic triterpenoids and calcium were identified as major constituents of this plant. The *Cissus quadrangularis* contains high amount of Carotene A, anabolic steroidal substances and Calcium. The plant contains ascorbic acid, 479 mg and carotene, 267 mg per 100 g freshly prepared paste, in addition to calcium oxalate. The stem of the plant contains two asymmetric tetracyclic triterpenoids, onocer-7 ene 3α, 21β diol \((\text{C}_{30} \text{H}_{52} \text{O}_2)\), m.p. 200-202°C and onocer-7 ene-3β, 21α diol \((\text{C}_{30} \text{H}_{52} \text{O}_2)\), m.p. 233–234°C. It also contains two steroidal principles: (1) \(\text{C}_{27} \text{H}_{45} \text{O}\), melting point 249-252°C; (2) \(\text{C}_{23} \text{H}_{41}\), melting point 136-138°C. Presence of β-sitosterol (Figure 3), δ amyrin and δ- amyrone is also reported. The aerial parts of *Cissus quadrangularis* is found to contain a new asymmetric tetracyclic triterpenoid, 7-Oxo-Onocer-8-ene-3β, 21α diol \((\text{C}_{30} \text{H}_{50} \text{O}_3)\), m.p. 235-237°C. Seven new compounds are also reported which are 4-hydroxy 2 methyl-tricos-2 ene -22-one, 9-methyloctadec-9-ene, heptadecyl-octadecanoate, isosanylicosanoate, 31-methyl tritiacontan-1-ol, 7-hydroxy-20-oxo-docosanyl cyclohexane and 31-methyl tritiacontanoic acid. Small amount of taraxeryl acetate, friedelan-3-one, taraxerol and isopentacosanoic acid is also present. Presence of 3, 3', 4, 4'-tetrahydroxybiphenyl is also reported (Pluemjai and Saifah, 1986; Prajapati, 2003; Rastogi, 1995). Analysis of the air-dried *Cissus quadrangularis* plant reported to contain moisture 13.1, protein 12.8, wax 1.0, fiber 15.6, carbohydrate 36.6, mucilage and pectin 1.2 and ash 18.2%. The root powder also contain a rich source of mineral elements (mg/100 g dry matter): potassium 67.5, calcium 39.5, zinc 3.0, sodium 22.5, iron 7.5, lead 3.5, cadmium 0.25, copper 0.5 and magnesium 1.15 (Rastogi, 1995; Attawish *et al.*, 2002; Udupa *et al.*, 1961; Chopra *et al.*, 1991). Analysis of the toxicants also revealed the presence of oxalate, tannin, phytate, saponin contents (135, 0.3, 20, 0.16 mg/100 g of dry matter) respectively. The ash formed from the Cissus quadrangularis contains mostly carbonates and to a smaller extent phosphates of sodium, potassium, magnesium and calcium. Presence of potassium tartrate is also reported (Prasad and Udupa, 1963 and 1972). The *Cissus quadrangularis* stem is also reported to contain a water-soluble glycoside, which produces a fall in blood pressure in anaesthetized cats. Fresh stems of *Cissus quadrangularis* produces irritating action on the skin, which may be attributed to the presence of calcium oxalate and 31 methyl tritiacontanoic acid along with taraxeryl acetate, taraxerol and isopentacosanoic acid (Udupa *et al.*, 1965; Chopra *et al.*, 1975). Recently three new stilbene derivatives, quadrangularins A, B and C were isolated from *Cissus quadrangularis* together with resveratrol, piceatannol, pallidol and parthenocissine A. The stem extract of *Cissus quadrangularis* plant contains a high percentage of calcium ions (4% by weight) and phosphorous.

STRENGTH AS PER AYURVEDIC PHARMACO-POEIA OF INDIA (GOVT. OF INDIA)

3% W/W, Sulphated Ash content: NMT 5% W/W, Arsenic: NMT 1 ppm, Lead: NMT 5 ppm, Total bacterial count: NMT 800 CFU/g Total fungal count: NMT 500 CFU/g. Moisture content: NMT 5% W/W

TRADITIONAL USES

The roots and stems are most useful for healing of fracture of the bones. The stem is bitter; it is given internally and applied topically in broken bones, used in complaints of the back and spine (Pluemjai and Saifah, 1986). A paste of stem is useful for muscular pains (Anonymous, 1992). The plant has been documented in Ayurveda for the treatment of osteoarthritis, rheumatoid arthritis and osteoporosis (Pluemjai and Saifah, 1986; Prajapati, 2003). The stem juice of plant is used to treat scurvy, menstrual disorders, otorrhea and epistaxis (Anonymous, 1992). The use of sap with tamarind has been reported in East Africa for the treatment of gonorrhoea (Rastogi, 1995). The herb is fed to cattle to induce flow of milk. The ash of plant is useful as a substitute for baking powder (Anonymous, 1992). A paste of stem is given in asthma, burns and wounds, bites of poisonous insects and for saddle sores of horses and camels (Anonymous, 1992; Attawish et al., 2002). Decoction of shoots with dry ginger and black pepper is given for body pain the infusion of plant is anthelmintic (Anonymous, 1992). Leaves and young shoots are powerful alternatives, dried and powdered; they are administering in certain bowel infections connected with indigestion (Pluemjai and Saifah, 1986). The plant is useful in helminthiasis, anorexia, dyspepsia, colic, flatulence, skin diseases, leprosy, hemorrhage, epilepsy, convulsion, haemoptysis, tumors, chronic ulcers, swellings. The stout fleshy quadrangular stem is traditionally used for treatment of gastritis constipation, eye diseases, piles and anemia. The stem boiled in limewater it forms a preserve useful as a stomachic; The Rongas of east Africa apply the pounded stem to wounds (Udupa et al., 1961; Chopra et al., 1999).

Pharmacological Uses

Following the folk and traditional uses of the plant, it has been investigated scientifically in animal model to validate the potential of the plant in cure of variety of ailments.

Antioxidant and Free Radical Scavenging Activity

Methanol extract of Cissus quadrangularis exhibits strong antioxidant and free radical scavenging activity in vitro and in vivo systems mainly due to the presence of b-carotene (Prasad and Udupa, 1963; 1972).

Anti Microbial and Antibacterial Activity

Methanol extract (90%) and dichloromethane extract of stems possess antibacterial activity against S. aureus, E. coli, and P. aeruginosa and mutagenicity against Salmonella microsome (Udupa and Prasad, 1965). Antimicrobial activity has also been reported from stem and root extract (Prasad and Udupa, 1963). The alcoholic extract of aerial part was found to possess antiprotozoal activity against Entamoeba histolytica (Rajpal, 2005). Alcoholic extract of the stem showed activity against E. coli (Chopra, 1976). Methanol and dichloromethane extract of whole plant were screened for in vitro antiplasmodial activity (Pluemjai and Saifah, 1986).

Bone Healing Activity

Paste of alcoholic extract of the plant was locally as well as intramuscularly facilitates rapid healing of fracture in albino rats (Chopra et al., 1975). Ethanol extract (95%) enhances the development
of cortical bone and trabeculae in fetal fumor, which may be related to rich content of calcium, phosphorous and phytooestrogenic steroids and shown to influence early regeneration and quick mineralization of bone fracture healing process (Canalis et al., 1998). Ethanol extract (95%) of whole plant possess antiosteoporotic activity in ovariectomized rat model of osteoporosis at two different dose levels of 500 and 750 mg per kg per weight.

Anti-ulcer Activity

Methanol extract showed significant antiulcer activity in experimentally induced ulcer in rat model by decreasing gastric secretions and by enhancing glycoprotein levels (Canalis et al., 1998). Methanol extract produce healing effect on aspirin induced gastric mucosal damage in rats through its antioxidative mechanism (Ogey et al., 2001). Triterpenoids and α-sitosterol present in methanol extract possess anti-lipid peroxidating effect and thus prevent gastric damage (Peng et al., 1994).

Analgesic, Anti-inflammatory and Stimulatory Activity

Methanol extract possess analgesic, anti-inflammatory and venotonic effects associated with hemorrhoids, anti-inflammatory activity is due to flavonoids especially luteolin and by β-sitosterol (Sanyal et al., 2005). β-sitosterol present in methanol extract has ability to reduce the enzymes MPO indicating a reduction of neutrophils influx in the inflamed tissue (Vishwanatha, 2006). Calcium oxalate, carotene, tetraterpenoids, β-sitosterol, amyrin and anabolic ketosteroids, which are responsible for acceleration of healing and possess anti-inflammatory and analgesic activity (Chopra, 1975; Shirwaikar, 2003). Ethanol extract exhibit protective effect on neutrophils mediated tissue injury induced by aspirin in rats. Methanol extract (90%) and dichloromethane extract of stems possess anti-inflammatory activity against COX-2 (Udupa et al., 1965). The stimulatory effect of extract is probably due to vitamins and is greater than that of the anabolic hormone durabolin (Govt. of India).

Central Nervous System Activity

The root extract possess central nervous system depressant activity indicated by decrease in exploratory behavior. Methanol extract of roots contains saponins which show potent sedative activity and also inhibit spontaneous motor activity in mice.

Miscellaneous Activity

Acetone and dichloromethane extract of the plant possess proteolytic activity against cysteine protease. Extract of the plant have wound healing activity and molluscidal activity. The extract of plant exhibits cardiotonic and androgenic property. Ethanol extract (50%) of aerial parts possess hypotensive activity and stem extract possess diuretic activity (Gubhabakshi et al., 2001). The plant formulation is used in the management of weight loss, metabolic syndrome and cardiovascular problems.

Toxicology

The *Cissus quadrangularis* extract does not produce any toxic effect on oral administration (1 mg/kg daily for 10 days) in mice, rats and guinea pigs. However, on intravenous administration, the animals developed convulsions and died in five minutes. The MLD worked out to be 15.5 mg/kg in guinea pigs. Toxicological evaluation of the plant revealed that the drug is safe even at higher dose for a prolonged duration of treatment. **Formulation**
and preparations The plant is incorporated in various formulations along with different herbs. These include Laksadi Guggulu, Asthisamharadi Churna, Asthisamhara Taila, Dasyadi Kwatha, Darvi Kwatha etc. (Anonymous, 1976).

CONCLUSION
In recent years, ethnobotanical and traditional uses of natural compounds, especially of plant origin received much attention as they are well tested for their efficacy and generally believed to be safe for human use. They obviously deserve scrutiny on modern scientific lines such as phytochemical investigation, biological evaluation on experimental animal models, toxicity studies, investigation of molecular mechanism of action of isolated phytoprinciples and their clinical trials. Our thorough screening of literature available on Cissus quadrangularis depicted an interesting fact that though the plant is a popular remedy for a variety of ailments and a range of formulations has been marketed, little effort have been made to verify its purity, quality and efficacy through scientific screening. In future study, the isolated principles from Cissus quadrangularis needs to be evaluated in scientific manner using specific experimental animal models and clinical trials to understand the molecular mechanism of action, in search of lead molecule from natural resources.

ACKNOWLEDGMENT
I sincerely thanks Medical Research Council of Maharashtra for approving my research topic as star research project. I thanks My guide Dr .S.Y. Raut, Head and Professor, Dept. of Shalyatantra. Govt. Ayurved College Nagpur for his valuable guidance for research on Cissus quadrangularis and I also thanks to Mrs. Priyali Rasale my life partner for his moral support and support in literature search. Thankfull to Dr. Sekhar Namburi AMHRI Nagpur and Dr. Suryawanshi M.N. Asst. Director incharge AMHRI Nagpur for Support and free hand to use institute library.

REFERENCES

34. The Ayurvedic Pharmacopoeia of India, Govt. of India, Ministry of Health and Family welfare, Department of Indian system of medicine and Homeopathy, New Delhi, 1st Edition, Part – I Vol. III, pp. 21-22.

