PHENOTYPIC DETECTION AND PREVALENCE OF METALLO β-LACTAMASES (MBLs) IN CARBAPENEM RESISTANT ISOLATES OF ACINETOBACTER SPECIES AT A TERTIARY CARE HOSPITAL IN NORTH INDIA

Pooja Singla1*, Rama Sikka1, Antariksh Deep1 and Uma Chaudhary1

*Corresponding Author: Pooja Singla, pjsingla3@gmail.com

INTRODUCTION

Acinetobacter baumannii is the most important species of genus Acinetobacter which has emerged as one of the significant nosocomial pathogen worldwide. Species other than A. baumannii such as A. Iwoffii, A. johnsonii, A. junii and A. haemolyticus are involved less frequently in nosocomial infections, and are generally more susceptible to antibiotics. A. baumannii causes a wide range of clinical infections such as pneumonia, blood stream infections, urinary tract infections, wound infections and meningitis especially in patients admitted in intensive care units. The treatment of these infections is hampered by the rapid rise in prevalence of A. baumannii strains that are resistant to almost

1 Department of Microbiology, Pt. B. D. Sharma University of Health Sciences, Rohtak, Haryana, India.
all available antibiotics, including β-lactams, fluoroquinolones, tetracyclines, and aminoglycosides (Bergogne and Towner, 1996). Carbapenem group of antibiotics play a vital role in the management of infections caused by these multi drug resistant (MDR) strains, because of their broad spectrum activity and stability to hydrolysis by most of the β-lactamases, including extended spectrum β-lactamases. However, now a days carbapenem resistance in Acinetobacter is observed increasingly worldwide. Metallo-β-lactamases (MBLs) confer a high level of carbapenem resistance in A. baumannii isolates, as well as resistance to all β-lactams except aztreonam, because of their strong hydrolytic activity against these antibiotics. MBL producing isolates also have the propensity to show concomitant resistance to multiple antimicrobial agents thus further limiting therapeutic options (Poirel and Nordmann, 2006). This necessitates rapid screening and detection of MBLs in Acinetobacter, so as to modify therapy and initiate effective infection control measures to prevent further dissemination of this catastrophic agent. Therefore, an attempt have been made in the present study to identify phenotypically metallo-β-lactamases in carbapenem resistant isolates of Acinetobacter species.

MATERIALS AND METHODS

Study Design

The present prospective study was conducted at the Microbiology Department of a teaching tertiary care hospital over a period of one year (May 2010 to April 2011). A total of hundred non-duplicate, non-consecutive isolates of Acinetobacter species were included in the study. These strains were isolated from various clinical samples collected aseptically from patients of all age groups and sex, admitted in intensive care units (ICUs), wards and outdoor Departments of our hospital. The samples included were sputum, endotracheal aspirates, bronchoalveolar lavage (BAL), blood, pus, urine, cerebrospinal fluid (CSF), wound swabs, high vaginal swabs (HVS), throat swabs and other body fluids.

Identification and Antimicrobial Susceptibility Testing

All the samples were routinely cultured on blood agar and MacConkey agar. After overnight incubation at 37°C, the suspected colonies were further processed for identification of Acinetobacter species by Gram staining, oxidase test, hanging drop and by other standard biochemical tests (Collee et al., 1996). Antimicrobial susceptibility testing was done on Mueller Hinton agar by disc diffusion method and results were interpreted as per Clinical and Laboratory Standards Institute (CLSI) guidelines. The following antimicrobial discs (Hi-media, Mumbai, India) with their concentration given in parenthesis were used. ceftazidime (30 μg), cefepime (30 μg), ceftriaxone (30 μg), cefotaxime (30 μg), amoxycillin/clavulanic acid (20 μg/10 μg), imipenem (10 μg), piperacillin/tazobactam (100 μg/10 μg), ticarcillin/clavulanic acid (75 μg/10 μg), gentamicin (10 μg), amikacin (30 μg), netilmicin (30 μg), ciprofloxacin (5 μg), doxycycline (30 μg), cotrimoxazole (25 μg), polymyxin B (300 units) and colistin (10 μg). American Type Culture Collection (ATCC) strain viz. Escherichia coli 25922 was employed as a control strain.

Detection of MBL Production

Isolates showing reduced susceptibility to imipenem (zone diameter <16mm) were further processed for MBL production by combined disc test according to Yong et al, 2002 with slight
modification. A 0.5M EDTA solution was prepared by dissolving 18.61 gm of disodium EDTA.2H₂O in 100ml of distilled water and adjusting it to pH 8 by using NaOH. Two 10 μg imipenem discs and two 30 μg ceftazidime discs (15 mm from edge to edge) were placed on the surface of agar plate inoculated with test organism and EDTA solution (10 μl) was added to one of them to obtain a desired concentration of 750 μg. The inhibition zones of imipenem, ceftazidime and imipenem EDTA and ceftazidime EDTA discs were compared after 16-18 h of incubation at 37°C. A positive test was indicated by zone enhancement with EDTA impregnated imipenem and ceftazidime discs. The zone size enhancement of ≥5 mm for ceftazidime EDTA disc as compared to ceftazidime alone and a zone size enhancement of ≥7 mm for imipenem EDTA disc as compared to imipenem alone was taken as positive criteria for MBL production.

Statistical Analysis

For comparison of two or more set of variables, p value was calculated by using SPSS version 19. If the p-value was <0.05, it was considered significant.

RESULTS

Of the 100 Acinetobacter isolates (A. baumannii = 82, A. lwoffii = 18), 70% were imipenem resistant, out of which 39 (55.7%) isolates showed MBL production by combined disc test (Table 1) (Figure 1). Of 39 MBL producing Acinetobacter isolates, 15 showed zone enhancement with both

<table>
<thead>
<tr>
<th>Acinetobacter Species</th>
<th>Imipenem Resistant Isolates n(% Resistance)</th>
<th>MBL Producers n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. baumannii (n=82)</td>
<td>66(80.4)</td>
<td>38(57.5)</td>
</tr>
<tr>
<td>A. lwoffii (n=18)</td>
<td>4(22.2)</td>
<td>1(25)</td>
</tr>
<tr>
<td>Total (n=100)</td>
<td>70(70)</td>
<td>39(55.7)</td>
</tr>
</tbody>
</table>

![Table1: Distribution of MBL Producing Acinetobacter Isolates Among Imipenem Resistant (Screen Positive) Isolates](table1.png)

Figure 1: MBL production in Acinetobacter Species

IPM=imipenem, IPM+EDTA=imipenem+EDTA, Caz=ceftazidime, Caz+EDTA=ceftazidime+EDTA

![Figure 1](figure1.png)
imipenem and ceftazidime EDTA combinations, 13 isolates showed zone enhancement with ceftazidime EDTA only and 11 isolates showed zone enhancement with imipenem EDTA only. Maximum number of MBL production was detected in isolates obtained from respiratory samples 17/39 (43.5%) and blood 15/39 (38.4%). Majority of the MBL producing isolates were from ICU patients 19/39 (48.7%), followed by patients admitted in different wards 14/39 (35.8%) and outdoor patients 6/39 (15.3%). Out of 39, twenty eight (71.7%) were from adult patients and 11 (28.2%) were from children. Of 39 MBL positive isolates, thirty four (87.1%) were MDR. Statistically significant difference was found in the antimicrobial resistance of MBL producing and non producing isolates for ciprofloxacin, aminoglycosides, piperacillin tazobactam, ticarcillin clavulanic acid, amoxyclav and β-lactams (p value <0.05) (Table 2). None of the isolate was resistant to polymyxin B and colistin.

DISCUSSION

Carbapenem resistance in *Acinetobacter* species is a growing concern now a days since it limits the therapeutic options. Only few drugs such as colistin and tigecycline are suggested as possible effective treatment choices against carbapenem resistant isolates. The present study showed high level of imipenem resistance (70%) among *Acinetobacter* species. Numerous Indian studies from different regions have documented low (9%) to very high (90%) carbapenem resistance in *Acinetobacter* isolates (Taneja et al., 2003; Gaur et al., 2008; Karthika et al., 2009). The higher resistance to carbapenems in our study may be attributed to increased use of carbapenems in our hospital to treat MDR *A. baumannii* infections.

TABLE 2: Comparison of the Antimicrobial Resistance of MBL Producing and MBL Non Producing *Acinetobacter* Isolates

<table>
<thead>
<tr>
<th>Antimicrobial Drugs</th>
<th>MBL Producers (n=39)</th>
<th>MBL Non Producers (n=31)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Resistance (%)</td>
<td>n Resistance (%)</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>30 76.9</td>
<td>17 54.8</td>
<td><0.05</td>
</tr>
<tr>
<td>Amikacin</td>
<td>30 76.9</td>
<td>16 51.6</td>
<td><0.05</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>34 87.1</td>
<td>21 67.7</td>
<td><0.05</td>
</tr>
<tr>
<td>Netilmicin</td>
<td>27 69.2</td>
<td>14 45.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Ticarcillin+clavulanic acid</td>
<td>38 97.4</td>
<td>21 67.7</td>
<td><0.05</td>
</tr>
<tr>
<td>Piperacillin+tazobactam</td>
<td>25 64.1</td>
<td>12 38.7</td>
<td><0.05</td>
</tr>
<tr>
<td>Amoxycillin+clavulanic acid</td>
<td>38 97.4</td>
<td>22 70.9</td>
<td><0.05</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>35 89.7</td>
<td>20 64.5</td>
<td><0.05</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>33 84.6</td>
<td>13 41.9</td>
<td><0.05</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>37 94.8</td>
<td>26 83.8</td>
<td>>0.05</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>39 100</td>
<td>26 83.8</td>
<td><0.05</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>37 94.8</td>
<td>24 77.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Cefepime</td>
<td>39 100</td>
<td>24 77.4</td>
<td><0.05</td>
</tr>
</tbody>
</table>
especially in ICUs leading to selection of resistant isolates in the hospital. *A. lwoffii* is usually considered to be more susceptible to antibiotics and less pathogenic than *A. baumannii*. The present study showed significant difference (*p* value < 0.01) in terms of susceptibility to imipenem between *A. baumannii* (19.5%) and *A. lwoffii* (77.7%). Study from USA (Jones *et al.*, 1999) showed that 96.7% isolates of *A. lwoffii* were imipenem susceptible. Noyal *et al.*, 2009 from India also reported a difference in resistance to meropenem between *A. baumannii* (59%) and *A. lwoffii* (31.8%). In our study, metallo-\(\beta\)-lactamases were detected in 57.5% and 25% of the imipenem resistant isolates of *A. baumannii* and *A. lwoffii* respectively by combined disc test.

In CLSI guidelines, no phenotypic method has been given for screening and confirmatory detection of MBLs in *Acinetobacter* species. Therefore, different phenotypic methods have been used by different authors from Indian subcontinent to detect MBLs in *Acinetobacter* species. We used combined disc test as it is sensitive, specific and easy to carry out in small laboratories. Karthika *et al.* (2009) have reported MBL production in 70.9% of imipenem resistant isolates of *Acinetobacter baumannii*. Anwar *et al.* (2010) have reported MBL production in 65.5% of the imipenem resistant *Acinetobacter* isolates which was higher than the present study. The non detection of MBLs in 44.2% of the carbapenem resistant isolates in our study could be due to the fact that apart from MBL production, carbapenem resistance in *Acinetobacter* spp. can occur due to some other resistance mechanisms. *Acinetobacter* spp. inherently possess oxacillinases represented by OXA-51/69 and AmpC type cephalosporinases, overexpression of which leads to carbapenem resistance and these enzymes are difficult to be detected by simple laboratory methods. Along with these intrinsically occurring enzymes, *Acinetobacter* spp. also possess carbapenem hydrolyzing class D \(\beta\)-lactamases (CHDLs) represented by OXA-23, 27, 49, 24, 25, 26, 40 and 58 which are acquired \(\beta\)-lactamases and responsible for carbapenem resistance. Reduced expression of outer membrane proteins, modification of the penicillin binding proteins and efflux mechanisms also contribute to carbapenem resistance in *Acinetobacter* spp. As these resistance mechanisms were not studied, so, these might have contributed to carbapenem resistance in non MBL producing *Acinetobacter* isolates in our study. By using ceftazidime EDTA along with imipenem EDTA, we were able to detect additional isolates showing MBL activity as thirteen isolates showed zone enhancement with ceftazidime EDTA only. The increased sensitivity of EDTA ceftazidime combination have also been reported by Noyal *et al.*, 2009 and Hemalatha *et al.*, 2005. These results indicate the ability of ceftazidime to produce a marked inhibitory effect with EDTA. In the current study, 87.1% MBL positive isolates were MDR and on comparing the antimicrobial resistance pattern of MBL producing and non producing isolates of *Acinetobacter* spp., we observed that MBL producing isolates also showed concomitant resistance to aminoglycosides and fluoroquinolones. The *p* value was found to be < 0.05 which indicated a significant difference. Peymani *et al.*, 2011 also found that all MBL producing isolates were MDR and exhibited high degree of resistance to \(\beta\)-lactams, aminoglycosides and fluoroquinolones. Similar results have also been noted by Anuradha *et al.*, 2010. Since, MBL genes are located on plasmids and these plasmids also carry genes
causing resistance to other antibiotics such as aminoglycosides and fluoroquinolones, therefore, coreistance to other antibiotics are common in MBL producing isolates (Walsh et al., 2005).

CONCLUSION

Hence, by acquiring metallo-β-lactamases, Acinetobacter strains showed high level of resistance to β-lactam antibiotics. These isolates also showed significant coresistance to other class of antibiotics thus, leaving behind only few therapeutic options. Failure to detect these enzymes has contributed to their uncontrolled spread and therapeutic failures. So, these β-lactamases should be detected routinely in clinical laboratories by using appropriate methods and reported to clinicians at time so that inappropriate use of antibiotics can be stopped in time.

REFERENCES

