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Abstract—This paper deals with one of the most challenging 

task of simultaneous control of two hemodynamic variables 

by the infusion of sensitive cardiac drugs in congestive heart 

failure (CHF) patients. A nonparametric internal model 

control (IMC) algorithm along with an integral control 

action has been proposed in this work for regulating two 

hemodynamic variables, the mean arterial pressure (MAP) 

and the cardiac output (CO) by simultaneous 

administration of two drugs – sodium nitroprusside (SNP) 

and dopamine (DPM). The two-input two-output 

physiological model of CHF patient is identified online by 

solving Volterra kernels from the input-output data of the 

physiological process. FFTs are taken on respective time 

domain kernels to obtain the Volterra transfer function 

(VTF) of the multivariable system. The internal model 

control algorithm is developed using this VTF. The integral 

control action has been combined with IMC for set-point 

tracking. Using this closed loop control algorithm MAP and 

CO reaches the steady state value within a very short time 

with the minimum infusion of highly sensitive cardiac drugs 

in presence of actuator and sensor noises.  

 

Index Terms—online identification, nonparametric model, 

Volterra kernel, internal model control, congestive heart 

failure. 

 

I. INTRODUCTION 

The most common disorder in the cardiovascular 

system is congestive heart failure (CHF). The heart of the 

CHF patient fails to pump sufficient blood to the body’s 

tissue and suffers from shortness of breath. High blood 

pressure damages the cardiac work and the blood vessels 

causing heart attack and heart failure. In intensive care 

unit or in operating theatre, certain hemodynamic 

variables of the patients suffered by a disturbance due to 

surgery or some sort of trauma are maintained at their 

desired value by the controlled infusion of drugs. In case 

of patients with congestive heart failure, mean arterial 

pressure (MAP) and cardiac output (CO) are 

simultaneously controlled at the safe level by intravenous 

infusion of two drugs – sodium nitroprusside (SNP) and 

dopamine (DPM) simultaneously. In clinical practice, 

these hemodynamic variables are kept at safe values 

using manual drug delivery by experienced physician. It 
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is very difficult to determine the right infusion rates of 

the multiple drugs and maintain the variables at their safe 

value. An automatic drug delivery system is useful for 

close regulation of variables in the coupled process. 

The model of cardiovascular system in congestive 

heart failure (CHF) patient with the responses of the 

hemodynamic variables and the infusion of two cardiac 

drugs SNP and DPM was initially developed by Yu et al. 

[1].
 
Efforts have been made from the last two decades in 

designing a closed loop control system that would be able 

to control the infusion rate of SNP and DPM [2]-[7]. Rao 

et al. [3], [4] developed a MPC strategy and tested on a 

nonlinear canine circulatory model for the regulation of 

MAP, CO, MPAP with the infusion of SNP, DPM, PNP 

and NTG under critical care conditions. Boldisor et al. [5] 

developed a fuzzy control strategy and Enbiya et al. [6] 

developed a multivariable model reference adaptive 

control (MRAC) algorithm to regulate the two variables 

MAP and CO by automatic infusion of two drugs SNP 

and DPM. But these controllers cannot regulate the 

hemodynamic variables online when the dynamics and 

parameters of the process vary widely with patient 

condition.  

As the cardiovascular system is a complex nonlinear 

multivariable system and there are dynamic uncertainties 

from patient to patient, a dynamic model is required to be 

identified from the input-output data of the patient to 

predict the dynamic behavior of the patient. Various 

parametric and nonparametric identification methods 

have been developed by researchers to model complex 

systems [8]-[16]. But the main disadvantage of using 

parametric model is that the parametric model lack full 

information of nonlinearities in such a coupled system. A 

potential advantage of using nonparametric model is that 

it can yield nonlinear model based controller directly 

from the identified process [11]-[16].  
This paper concentrates on the design of online 

nonparametric identification and internal model control 

algorithm that will automatically adjust the controller 

with the change in dynamics and parameters of the 

process. The two input two output patient hemodynamic 

model [6] described by a first order system with delays 

has been developed. The frequency domain Volterra 

kernels [11]-[14] of the virtual patient model are 

computed and used in nonparametric internal model 
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control (IMC) to find the optimum drug dosage. The 

identification and the control of hemodynamic variables 

are made online by adaptive recursive least square 

(ARLS) algorithm [12]-[14]. As the problem of 

simultaneously controlling two vital hemodynamic 

variables MAP and CO by the intravenous infusion of 

cardiac drugs in a congestive heart failure patient is 

basically a set-point tracking problem, the control scheme 

is developed by combining IMC with an integral control 

action.  

II. CONGESTIVE HEART FAILURE PATIENT RESPONSE 

MODEL 

The patient hemodynamic model [6] is described by a 

2-input-2-output first order system with delays. 
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where, ijK = Model gain 

             ijT = Time delay (min) between the input and                                                                                           

the system response. 

             ij = Time constant (min) 

The parameter values are taken from Enbiya et al. [6]. 

The infusion rate of the drugs used to control the 

variables MAP and CO are measured in (μg/kg/min). 

Cardiac output is measured in (ml/kg/min). Mean arterial 

pressure is measured in millimeters of mercury (mmHg).  

III. INTERNAL MODEL CONTROL FRAMEWORK 

IMC generates control signals using parametric or 

nonparametric model of the process. In the present work, 

nonlinear control problem has been tried to solve by 

extending IMC to accommodate nonlinear nonparametric 

model identified online. 

A. Patient Model Identification 

Volterra equations have been solved online by adaptive 

recursive least square (ARLS) algorithm to compute the 

kernels of the patient model. For a MIMO system with xi 

number of inputs, where i=1, 2, … m, the equation of the 

output y(t) for a memory length M of generalized finite 

Volterra series up to second order kernel in time domain 

is as follows: 
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The self-kernels gii acting on a single input are 

symmetric and the cross-kernels gij acting on different 

inputs and they are asymmetric [8]-[10]. The required 

Volterra kernels are computed online in adaptive way 

using recursive least square (RLS) algorithm to select the 

filter coefficients [8]-[10] and update the same with new 

data set by minimizing a cost function: 
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where, )(e  is the error signal and )(d  is the desired 

signal.   is a factor that controls the memory span of the 

adaptive filter. 

The Volterra transfer function for the design of internal 

model control algorithm obtained from the frequency 

domain Volterra kernels can be written as: 

                                                                                       (4) 

The performance of the proposed identification 

algorithm for 15min simulation with the inputs SNP and 

DPM subjected to a step change from 0 to 1μg/kg/min 

and 0 to 4μg/kg/min respectively is shown in Fig. 1. The 

initial condition for MAP and CO is taken as 88mmHg 

and 64ml/kg/min respectively. 

 

 

Figure 1.  Performance of the proposed identification algorithm. 

B. Design Objectives and Solution for IMC   

A general model-based control structure is shown in 

Fig. 2. The nonlinear process P is modeled by G. An 

overall controller H is composed of a feed-forward path 

controller Q and the feedback model G. The feed-forward 

controller Q generates a control sequence u through 

observed plant output y and output predicted by G [15-

16]. 

The design objective is to find 
:J  and to find a 

Q such that 

 eJ
u

min                           (5)  

where,  

 yye R                             (6) 

The IMC of Fig. 2 can be constructed using 

nonparametric model from analytical Volterra structure in 

frequency domain. The finite number of identified 
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frequency domain kernels of G, is denoted by gi, with 

Ni ,.....2,1 . The model output can be written in 

compact form as: 








1

*

i

iM nugnugnyy                                        (7)                      

hence,   

     *)*( qgynyne MM                         (8) 

The objective of (5) is therefore strictly met if 

  ,*)*( qg ;  i.e.  

IQG * or,
1 GQ                                              (9) 

Hence, an optimal solution of Q is found as 
1G  i.e. 

inverse of the frequency domain kernel. 

 

 

Figure 2.  Structure of an IMC scheme.  

C. Controller Synthesis Based on Volterra Model   

Obtaining a strictly zero J of (5) would be impossible 

in practice. Thus the frequency domain Volterra kernels 

of the model G and the controller Q are decomposed into 

linear operator and a nonlinear one based on higher order 

Volterra kernels [16]. 

...)( 321  GGGG               (10) 

...)( 321  QQQQ                (11) 

A problem arises if either the inverse of 1G  does not 

exist or it is unrealizable. Hence we revise the objective 

(5) as: 

   ieJ i

Q
i  ,min )(                   (12) 

where,                               
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If the Euclidian metric (or the L2-norm) is used to 

measure revised objective (12), the optimization problem 

for the case 1i  will have the solution: 

 LGu  1
)1(                         (15)                       

i.e.                                  LGQ  11                            (16) 

Similarly, the higher-order solutions are derived as: 

  ,)(
1

)( jLj Gu  for ,.....3,2j                (17) 

where 
)( j is a quantity dependent upon known 

quantities up to step j. The block diagram of the overall 

online model identification and control process is shown 

in Fig. 3. 

 

 

Figure 3.  Block diagram of online internal model control scheme. 

D. Set-point Tracking using Online Internal Model 

Controller   

As the problem of simultaneously controlling of two 

vital hemodynamic variables MAP and CO by the 

intravenous infusion of cardiac drugs SNP and DPM in a 

congestive heart failure patient is basically a tracking 

problem, the control scheme is developed by combining 

IMC with an integral control action shown in Fig. 4. An 

integral control action is incorporated to the IMC that 

updates the controller based on the variability between 

the predicted output and the measured output and provide 

perfect set-point tracking. 

 

 

Figure 4.  Block diagram of online internal model control with integral 
control action. 
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IV. EXPERIMENTS AND VERIFICATION OF RESULTS 

The model is subjected to the basal SNP dose of 

1μg/kg/min and basal DPM dose of 4μg/kg/min. The 

steady state value of this CHF patient is set at 97.5mmHg 

for MAP and 95ml/kg/min for CO [3]. The control 

objective is to maintain the variables MAP and CO within 

a range of values; they may not be exactly at the set-point. 

It is also desirable that the time required to reach the 

steady state should be very small. The performance of the 

IMC control scheme in addition with integral control 

action in controlling MAP and CO by the infusion of 

SNP and DPM without and with sensor and actuator 

noises are shown in Fig. 5 and Fig. 6 respectively. Here 

the time required to reach the steady state is only 8min 

and the required infusion of cardiac drug ‘SNP’ is only 

0.5μg/kg/min and DPM is 4.1µg/kg/min. For regulating 

the hemodynamic variables, Rao et al. [3] has used the 

highly sensitive cardiac drug ‘SNP’ of value 4μg/kg/min 

which is required in our method is only 0.5μg/kg/min. 

For robustness analysis, the parameters K11 (normal 

range -1 to -50) and K12 (normal range 0 to 9) [6] are 

responsible for the increase in MAP has been increased 

by +50% of the nominal value. Fig. 7 shows that the 

present control algorithm performs robustly for the 

congestive heart failure patient model tested with the 

variation of the parameters that has the maximum effect 

on MAP. Both the outputs MAP and CO are controlled 

by the infusion of more amount of the drugs SNP and 

DPM to the patient having parameter uncertainty than in 

the case of a nominal patient during the initial period. 

 

 

Figure 5.  Response of MAP and CO and the corresponding infusion of 
SNP and DPM. 

V. COMPARISON WITH EARLIER REPORTED RESULTS 

The model is subjected to the same basal SNP dose 

and basal DPM dose and the steady state value of this 

CHF patient is set at 97.5mmHg for MAP and 

95ml/min/kg for CO as in Rao et al. [3]. The settling time 

taken to reach the steady state value is same as obtained 

by Rao et al. [3], but the infusion of highly sensitive SNP 

dose needed to reach the steady state value in this 

proposed method is only 0.5g/kg/min which is very less 

than the value 4µg/kg/min as obtained by Rao et al. [3]. 
 

 

Figure 6.  Response of MAP and CO and the corresponding infusion of 
SNP and DPM in presence of sensor and actuator noise. 

 

Figure 7.  Response of MAP and CO and the corresponding infusion of 
SNP and DPM when K11 and K12 are increased by +50% of the nominal 

value. 
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VI. CONCLUSION 

Model-based control requires a good model that 

closely represents the dynamics of the patient and design 

of a constrained controller. A data driven Volterra model 

for the nonlinear dynamic system of multivariable 

physiological process with multi drug infusion in a 

congestive heart failure patient with relatively short 

memory effects has been developed. The advantages of 

block-oriented model have been utilized with proper 

selection of Volterra kernels by ARLS algorithm and 

extended input vectors for the nonlinear process. Each 

frequency domain kernels, called the Volterra transfer 

function (VTF), is computed by taking the FFTs on 

respective time domain kernels for a specific length of 

extended input vector. An Internal Model Control 

algorithm has been developed by using the VTF. An 

integral control action has been added to provide perfect 

set-point tracking eliminating the steady state error. The 

performance of the proposed control algorithm has been 

tested on the congestive heart failure patient that yielded 

improved setting time with minimum intravenous infusion 

of sensitive cardiac drugs. The future research direction 

concerns in applying the present control algorithm in 

different patient conditions in critical care such as post-

operative hypertension and sepsis shock. 
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